Skip to content

Commit

Permalink
Fix Jacobian based on the discussion
Browse files Browse the repository at this point in the history
  • Loading branch information
Chris7462 committed Sep 11, 2024
1 parent b2be76a commit 9d1eb07
Showing 1 changed file with 15 additions and 12 deletions.
27 changes: 15 additions & 12 deletions examples/se2_localization_liekf.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@
*
* The motion and measurement models are
*
* X_(t+1) = f(X_t, u) = X_t * Exp ( w ) // motion equation
* X_(t+1) = f(X_t, u) = X_t * Exp ( u ) // motion equation
* y_k = h(X, b_k) = X * [0 0 1]^T // measurement equation
*
* The algorithm below comprises first a simulator to
Expand Down Expand Up @@ -146,8 +146,8 @@ int main()
Array3d u_sigmas;
Matrix3d U;

u_nom << 0.1, 0.0, 0.05;
u_sigmas << 0.1, 0.1, 0.1;
u_nom << 0.1, 0.0, 0.1;
u_sigmas << 0.1, 0.1, 0.05;
U = (u_sigmas * u_sigmas).matrix().asDiagonal();

// Declare the Jacobians of the motion wrt robot and control
Expand All @@ -158,7 +158,7 @@ int main()
Array2d y_sigmas;
Matrix2d R;

y_sigmas << 0.1, 0.1;
y_sigmas << 0.01, 0.01;
R = (y_sigmas * y_sigmas).matrix().asDiagonal();

// Declare the Jacobian of the measurements wrt the robot pose
Expand All @@ -167,6 +167,7 @@ int main()
// Declare some temporaries
Vector2d e, z; // expectation, innovation
Matrix2d E, Z; // covariances of the above
Matrix2d M;
Matrix<double, 3, 2> K; // Kalman gain
manif::SE2Tangentd dx; // optimal update step, or error-state

Expand All @@ -192,7 +193,7 @@ int main()
//

// Make 10 steps. Measure one GPS position each time.
for (int t = 0; t < 10; t++)
for (int t = 0; t < 1000; t++)
{
//// I. Simulation ###############################################################################

Expand Down Expand Up @@ -230,17 +231,19 @@ int main()
// transform covariance from right to left invariant
AdX = X.adj();
AdXinv = X.inverse().adj();
P_L = AdX * P * AdX.transpose(); // from eq. (54) in the paper
P_L = AdXinv * P * AdXinv.transpose();

// expectation
e = X.translation(); // e = t, for X = (R,t).
H.topLeftCorner<2, 2>() = Matrix2d::Identity();
H.topRightCorner<2, 1>() = manif::skew(1.0) * X.translation();
H.topLeftCorner<2, 2>() = -Matrix2d::Identity();
H.topRightCorner<2, 1>() = Vector2d::Zero();
E = H * P_L * H.transpose();

// innovation
z = y - e;
Z = E + R;
M = X.inverse().rotation();
z = M * (y - e); // z = X.inv().act(y) - X.inv().act(e)
// = M * (y - e)
Z = E + M * R * M.transpose();

// Kalman gain
K = P_L * H.transpose() * Z.inverse();
Expand All @@ -249,11 +252,11 @@ int main()
dx = K * z;

// Update
X = X.lplus(dx);
X = X.plus(-dx);
P_L = (I - K * H) * P_L;

// transform covariance from left to right invariant
P = AdXinv * P_L * AdXinv.transpose();
P = AdX * P_L * AdX.transpose();



Expand Down

0 comments on commit 9d1eb07

Please sign in to comment.