Skip to content

Latest commit

 

History

History
212 lines (169 loc) · 4.42 KB

File metadata and controls

212 lines (169 loc) · 4.42 KB
comments difficulty edit_url rating source tags
true
Easy
1280
Biweekly Contest 34 Q1
Array
Matrix

中文文档

Description

Given a square matrix mat, return the sum of the matrix diagonals.

Only include the sum of all the elements on the primary diagonal and all the elements on the secondary diagonal that are not part of the primary diagonal.

 

Example 1:

Input: mat = [[1,2,3],
              [4,5,6],
              [7,8,9]]
Output: 25
Explanation: Diagonals sum: 1 + 5 + 9 + 3 + 7 = 25
Notice that element mat[1][1] = 5 is counted only once.

Example 2:

Input: mat = [[1,1,1,1],
              [1,1,1,1],
              [1,1,1,1],
              [1,1,1,1]]
Output: 8

Example 3:

Input: mat = [[5]]
Output: 5

 

Constraints:

  • n == mat.length == mat[i].length
  • 1 <= n <= 100
  • 1 <= mat[i][j] <= 100

Solutions

Solution 1

Python3

class Solution:
    def diagonalSum(self, mat: List[List[int]]) -> int:
        ans = 0
        n = len(mat)
        for i, row in enumerate(mat):
            j = n - i - 1
            ans += row[i] + (0 if j == i else row[j])
        return ans

Java

class Solution {
    public int diagonalSum(int[][] mat) {
        int ans = 0;
        int n = mat.length;
        for (int i = 0; i < n; ++i) {
            int j = n - i - 1;
            ans += mat[i][i] + (i == j ? 0 : mat[i][j]);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int diagonalSum(vector<vector<int>>& mat) {
        int ans = 0;
        int n = mat.size();
        for (int i = 0; i < n; ++i) {
            int j = n - i - 1;
            ans += mat[i][i] + (i == j ? 0 : mat[i][j]);
        }
        return ans;
    }
};

Go

func diagonalSum(mat [][]int) (ans int) {
	n := len(mat)
	for i, row := range mat {
		ans += row[i]
		if j := n - i - 1; j != i {
			ans += row[j]
		}
	}
	return
}

TypeScript

function diagonalSum(mat: number[][]): number {
    let ans = 0;
    const n = mat.length;
    for (let i = 0; i < n; ++i) {
        const j = n - i - 1;
        ans += mat[i][i] + (i === j ? 0 : mat[i][j]);
    }
    return ans;
}

Rust

impl Solution {
    pub fn diagonal_sum(mat: Vec<Vec<i32>>) -> i32 {
        let n = mat.len();
        let mut ans = 0;
        for i in 0..n {
            ans += mat[i][i] + mat[n - 1 - i][i];
        }
        if (n & 1) == 1 {
            ans -= mat[n >> 1][n >> 1];
        }
        ans
    }
}

C

int diagonalSum(int** mat, int matSize, int* matColSize) {
    int ans = 0;
    for (int i = 0; i < matSize; i++) {
        ans += mat[i][i] + mat[i][matSize - 1 - i];
    }
    if (matSize & 1) {
        ans -= mat[matSize >> 1][matSize >> 1];
    }
    return ans;
}

Solution 2

TypeScript

function diagonalSum(mat: number[][]): number {
    const n = mat.length;
    let ans = 0;
    for (let i = 0; i < n; i++) {
        ans += mat[i][i] + mat[i][n - 1 - i];
    }
    if (n & 1) {
        ans -= mat[n >> 1][n >> 1];
    }
    return ans;
}