Skip to content

Mobile Network Operator Case Study with Flink, Kafka, Cassandra, Spring on Docker Compose and Kubernetes with a little bit of React and GraphQL.

Notifications You must be signed in to change notification settings

bkaminnski/mobile-case-study

Repository files navigation

Project Description

This Case Study draws from the mobile network operators (MNO) domain. The goal of the project is to implement ongoing, live tracking of data usage by mobile subscribers. As soon as data used within a billing period exceeds max data usage defined in the data plan - the system should generate appropriate notification. In this case study, we expect that appropriate messages are published to data-records-aggregates Kafka topic. Later these messages could be used for different purposes, like to inform the subscriber they exceeded the data plan or to lower the data transfer speed for the data used outside of the plan.

The source data for the project are data record files (tracking data used by mobile phone users) and subscribers' agreements defined by MNO.

Architecture

Architecture Diagram

The project uses Flink to import the files into the system, and as a streaming platform for detecting the moment of exceeding the data plan.

An auxiliary Spring backend project helps in generating test data:

  • 1️⃣ subscribers' agreements that define max data in the data plan, and
  • 2️⃣ data record files, that would be coming from MNO in a real project.

The project uses Kafka as the messaging platform and Cassandra database to store ingested data records. Spring backend publishes generated agreements to agreements Kafka topic, and stores generated data record files in /mobilecs/incoming-data-records folder.

There are two main processes in the Case Study.

Importing data records process

  • Implemented by 3️⃣ Incoming Data Records Importer Flink job
  • Reads raw data record files received from MNO (from /mobilecs/incoming-data-records folder)
  • Enriches them with an identifier that allows to uniquely identify any record globally in the system (regardless of identification provided by MNO)
  • Publishes them to 4️⃣ incoming-data-records Kafka topic

Ingesting data records process

  • Implemented by 5️⃣ Incoming Data Records Ingester Flink job
  • Reads imported data records from the incoming-data-records Kafka topic
  • Reads subscribers' agreements from the agreements Kafka topic
  • Matches incoming data records with agreements (using Flink RichCoFlatMapFunction), creating ingested data records, from now on referred to as simply data records
  • Stores resulting data records in 6️⃣ Cassandra database, in mobilecs.data_record table
  • Defines 7️⃣ a tumbling window that corresponds to the billing period (with a custom assigner, a custom trigger, and a process window function)
  • Aggregates data records within the window and publishes appropriate message to 8️⃣ data-records-aggregates topic twice in the window lifetime:
    • as soon as the data used in the period exceeds the data plan (DATA_PLAN_EXCEEDED)
    • at the end of the billing period (BILLING_PERIOD_CLOSED)

Running the project

The project can be executed both in docker-compose and kubernetes. Docker compose allows to quickly start single containers - useful for local development.

Docker Compose

  1. Build maven projects

     mvn clean package
    
  2. Start docker compose

     docker-compose up -d --build
    

    ℹ️ Due to the nature of docker-compose (no retry policy), projects with dependencies might not start from time to time (e.g. kafka when zookeeper does not start on time, backend when cassandra does not start on time). You may need to start them manually with another call to docker-compose up. The solution could be to switch to docker swarm (docker swarm supports retry policy) or use Kubernetes which auto-restarts pods if they fail to start - see below.

  3. Run docker ps -a, the output should look like below: 6 containers in up status.

     CONTAINER ID        IMAGE                             COMMAND                  CREATED              STATUS              PORTS                                                       NAMES
     2d06adc47024        mobilecs-backend                  "/docker-entrypoint.…"   About a minute ago   Up About a minute   0.0.0.0:8080->8080/tcp                                      mobilecs-backend
     59b8931c7760        flink:1.11.2-scala_2.11-java11    "/docker-entrypoint.…"   About a minute ago   Up About a minute   6123/tcp, 8081/tcp                                          mobilecs-taskmanager
     bfca0eeae3b8        confluentinc/cp-kafka:5.4.3       "/etc/confluent/dock…"   About a minute ago   Up About a minute   0.0.0.0:9092->9092/tcp, 0.0.0.0:29092->29092/tcp            mobilecs-kafka
     f3a29089bce0        confluentinc/cp-zookeeper:5.4.3   "/etc/confluent/dock…"   About a minute ago   Up About a minute   2888/tcp, 0.0.0.0:2181->2181/tcp, 3888/tcp                  mobilecs-zookeeper
     311f4b8249d6        cassandra:3.11.8                  "docker-entrypoint.s…"   About a minute ago   Up About a minute   7000-7001/tcp, 7199/tcp, 9160/tcp, 0.0.0.0:9042->9042/tcp   mobilecs-cassandra
     e57f76f6517b        mobilecs-flink                    "/docker-entrypoint-…"   About a minute ago   Up About a minute   6123/tcp, 0.0.0.0:8081->8081/tcp                            mobilecs-jobmanager
    
  4. Open Flink Dashboard (http://localhost:8081/#/job/running) and make sure both jobs are running: Incoming Data Records Importer and Incoming Data Records Ingester

  5. In case of restarting the project and running it again from scratch (e.g. after docker-compose down) make sure to also clean the volume in which incoming data files are generated (docker-compose down does not clean volumes).

    • Run docker exec -it mobilecs-backend bash
    • Delete all the files in /mobilecs/incoming-data-records

    Or delete the volume before restarting docker compose: docker volume rm mobilecs_incoming-data-records

  6. Start Kafka consumer for expected data records aggregated in Flink

     docker exec mobilecs-kafka bash -c "kafka-console-consumer --topic data-records-aggregates --from-beginning --bootstrap-server mobilecs-kafka:29092 --property print.timestamp=true"
    
  7. Generate test agreement and CDR Data Records

     curl http://localhost:8080/api/agreements/generate
     curl http://localhost:8080/api/incoming-data-records/generate
    
  8. Go back to the console in which Kafka consumer is running for data-records-aggregates topic. Check results, it should look like below. When it shows - it means that this Case Study project finished successfully.

     CreateTime:1580511599999	{
       "agreementId" : "0b12c601-9287-3f5c-a78c-df508fe0f889",
       "year" : 2020,
       "month" : 1,
       "latestRecordedAt" : "Fri Jan 10 23:00:00 UTC 2020",
       "latestInternalRecordId" : "523d8cc7-e611-3508-90bc-fab260b2973e",
       "totalRecordedBytes" : 5697948758,
       "billingPeriodTimeZone" : "Europe/Warsaw",
       "maxBytesInBillingPeriod" : 5368709120,
       "type" : "DATA_PLAN_EXCEEDED"
     }
     CreateTime:1580511599999	{
       "agreementId" : "0b12c601-9287-3f5c-a78c-df508fe0f889",
       "year" : 2020,
       "month" : 1,
       "latestRecordedAt" : "Thu Jan 30 23:00:00 UTC 2020",
       "latestInternalRecordId" : "b58a3008-23a9-384c-b4e6-2cc837d1ef07",
       "totalRecordedBytes" : 13559994361,
       "billingPeriodTimeZone" : "Europe/Warsaw",
       "maxBytesInBillingPeriod" : 5368709120,
       "type" : "BILLING_PERIOD_CLOSED"
     }
    
  9. Other commands for further insight

    • Kafka consumer for agreements generated in backend service

        docker exec mobilecs-kafka bash -c "kafka-console-consumer --topic agreements --from-beginning --bootstrap-server mobilecs-kafka:29092 --property print.timestamp=true"
      
    • Kafka consumer for data records imported by Flink

        docker exec mobilecs-kafka bash -c "kafka-console-consumer --topic incoming-data-records --from-beginning --bootstrap-server mobilecs-kafka:29092 --property print.timestamp=true"
      
    • Bash for backend service

        docker exec -it mobilecs-backend bash
      
  10. Useful docker and docker compose commands

     docker volume ls
     docker-compose logs -f --tail=all
     docker-compose up -d kafka
     docker-compose down
     docker system prune -a --volumes
    

    ⚠️ docker system prune -a --volumes cleans up docker COMPLETELY so use with caution! More on these cleaning commands, here.

Kubernetes

  1. Install and start minikube, https://minikube.sigs.k8s.io/docs/start/, e.g.:

     minikube start --profile mobilecs --driver=hyperkit --cpus=3 --memory=8g
    
  2. Build maven projects and deploy docker images

     ./k8s-build-and-deploy.sh
    

    ℹ️ The script configures docker daemon to use minikube, so that kubernetes can access mobilecs project images (also requires imagePullPolicy: IfNotPresent - see kubernetes.yaml.

  3. Apply all kubernetes objects

     kubectl apply -f kubernetes.yaml
    
  4. Run kubectl get pods, the output should look like below: 6 pods in READY status 1/1.

     NAME                                     READY   STATUS    RESTARTS   AGE
     backend-deployment-6bb6846cbd-77fgv      1/1     Running   5          9m47s
     cassandra-statefulset-0                  1/1     Running   0          9m47s
     jobmanager-deployment-69f64fcf6b-v45dk   1/1     Running   0          9m46s
     kafka-statefulset-0                      1/1     Running   0          9m46s
     taskmanager-deployment-677b6f454-92p9f   1/1     Running   0          9m46s
     zookeeper-statefulset-0                  1/1     Running   0          9m46s
    
  5. Open Flink Dashboard (e.g. http://192.168.64.11:30081/#/job/running) and make sure both jobs are running: Incoming Data Records Importer and Incoming Data Records Ingester

    ℹ️ Run minikube -p mobilecs service jobmanager-rest-service --url to check URL of Flink Dashboard and replace in the address above.

  6. In case of restarting the project and running it again from scratch make sure to also clean all persistent volumes.

  7. Start Kafka consumer for expected data records aggregated in Flink

     kubectl exec `kubectl get pods -l app=kafka -o name` -- bash -c "kafka-console-consumer --topic data-records-aggregates --from-beginning --bootstrap-server kafka-service:29092 --property print.timestamp=true"
    
  8. Generate test CDR Data Records and agreements

     curl `minikube -p mobilecs service backend-service --url`/api/agreements/generate
     curl `minikube -p mobilecs service backend-service --url`/api/incoming-data-records/generate
    
  9. Go back to the console in which Kafka consumer is running for data-records-aggregates topic. Check results, it should look like below. When it shows - it means that this Case Study project finished successfully.

     CreateTime:1580511599999	{
       "agreementId" : "0b12c601-9287-3f5c-a78c-df508fe0f889",
       "year" : 2020,
       "month" : 1,
       "latestRecordedAt" : "Fri Jan 10 23:00:00 UTC 2020",
       "latestInternalRecordId" : "523d8cc7-e611-3508-90bc-fab260b2973e",
       "totalRecordedBytes" : 5697948758,
       "billingPeriodTimeZone" : "Europe/Warsaw",
       "maxBytesInBillingPeriod" : 5368709120,
       "type" : "DATA_PLAN_EXCEEDED"
     }
     CreateTime:1580511599999	{
       "agreementId" : "0b12c601-9287-3f5c-a78c-df508fe0f889",
       "year" : 2020,
       "month" : 1,
       "latestRecordedAt" : "Thu Jan 30 23:00:00 UTC 2020",
       "latestInternalRecordId" : "b58a3008-23a9-384c-b4e6-2cc837d1ef07",
       "totalRecordedBytes" : 13559994361,
       "billingPeriodTimeZone" : "Europe/Warsaw",
       "maxBytesInBillingPeriod" : 5368709120,
       "type" : "BILLING_PERIOD_CLOSED"
     }
    
  10. Other commands for further insight

    • Kafka consumer for agreements generated in backend service

        kubectl exec `kubectl get pods -l app=kafka -o name` -- bash -c "kafka-console-consumer --topic agreements --from-beginning --bootstrap-server kafka-service:29092 --property print.timestamp=true"
      
    • Kafka consumer for data records imported in Flink

        kubectl exec `kubectl get pods -l app=kafka -o name` -- bash -c "kafka-console-consumer --topic incoming-data-records --from-beginning --bootstrap-server kafka-service:29092 --property print.timestamp=true"
      
    • Open bash for backend service

        kubectl exec -it `kubectl get pods -l app=backend -o name` -- bash
      
    • Open bash for cassandra service

        kubectl exec -it `kubectl get pods -l app=cassandra -o name` -- bash
      
  11. Useful kubernetes commands

    • Read about stern here)

    • Install jq with brew install jq

        minikube dashboard
        minikube profile list
        minikube profile list -o json | jq .
        minikube stop -p mobilecs
        minikube delete -p mobilecs
        kubectl get pods --show-labels -w -o wide
        watch -n 0.1 kubectl get pods --show-labels -o wide
        stern backend
      

Cassandra

One of the results of running the complete case study as described above, is that incoming data records matched with agreements are stored in Cassandra database, in mobilecs.data_record table. Instead of running a complete case study, one can directly generate data records using a dedicated generator.

Directly generating data records

  1. Start only cassandra database via docker compose

     docker-compose up -d cassandra
    
  2. Start backend project locally (e.g. in IntelliJ)

  3. Directly generate data-records

     curl http://localhost:8080/api/data-records/generate
    
  4. Run cqlsh

     docker exec -it mobilecs-cassandra bash -c "cqlsh"
    
  5. Useful cassandra queries

     use mobilecs;
     select * from data_record;
     select * from data_record where agreement_id = 0b12c601-9287-3f5c-a78c-df508fe0f889 and year = 2020 and month = 01;
     select * from data_record where agreement_id = 0b12c601-9287-3f5c-a78c-df508fe0f889 and year = 2020 and month = 02;
     truncate data_record;
    
  6. Getting and upserting data records via REST API

     curl http://localhost:8080/api/data-records/0b12c601-9287-3f5c-a78c-df508fe0f889/2020/01 | jq .
     curl http://localhost:8080/api/data-records/0b12c601-9287-3f5c-a78c-df508fe0f889/2020/02 | jq .
     curl --header "Content-Type: application/json" --request PUT --data '{"recordedAt": "2020-01-01T23:00:00.000+00:00", "internalRecordId": "82b6a30a-b659-3a4d-85f7-2771b6f69f56", "recordedBytes": 123456}' http://localhost:8080/api/data-records/0b12c601-9287-3f5c-a78c-df508fe0f889 | jq .
    
  7. Getting data records in React app (work in progress)

     cd frontend
     yarn start
    

    and navigate to http://localhost:3000

  8. Getting and upserting data records via GraphQL (http://localhost:8080/graphql and http://localhost:8080/graphiql)

    • Finding data records, click here

        {
          findDataRecords(agreementId: "0b12c601-9287-3f5c-a78c-df508fe0f889", year: 2020, month: 1) {
            key {
              recordedAt
              internalRecordId
            }
            recordedBytes
          }
        }
      
    • Getting total data usage, click here

        {
          getTotalDataUsage(agreementId: "0b12c601-9287-3f5c-a78c-df508fe0f889", year: 2020, month: 1)
        }
      
    • Upserting data record mutation, click here

        mutation upsertDataRecord($agreementId: String!, $upsertRequest: DataRecordUpsertRequest!) {
          upsertDataRecord(agreementId: $agreementId, upsertRequest: $upsertRequest) {
            key {
              agreementId
              year
              month
              recordedAt
              internalRecordId
            }
            recordedBytes
          }
        }
      

      Query variables:

        {
          "agreementId": "0b12c601-9287-3f5c-a78c-df508fe0f889",
          "upsertRequest": {
            "recordedAt": "2020-01-01T23:00:00.000+00:00",
            "internalRecordId": "82b6a30a-b659-3a4d-85f7-2771b6f69f56",
            "recordedBytes": 123456
          }
        }
      

About

Mobile Network Operator Case Study with Flink, Kafka, Cassandra, Spring on Docker Compose and Kubernetes with a little bit of React and GraphQL.

Topics

Resources

Stars

Watchers

Forks

Languages