-
Notifications
You must be signed in to change notification settings - Fork 227
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Polynomial roots via eigenvalues of the companion matrix
- Loading branch information
1 parent
a53b013
commit ebc1f48
Showing
3 changed files
with
191 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
/* | ||
* Copyright Nick Thompson, 2024 | ||
* Use, modification and distribution are subject to the | ||
* Boost Software License, Version 1.0. (See accompanying file | ||
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
*/ | ||
#include <vector> | ||
#include <iostream> | ||
#include <list> | ||
#include <random> | ||
#include <cmath> | ||
#include <complex> | ||
#include <utility> | ||
#include <limits> | ||
#include <algorithm> | ||
#include <boost/math/tools/polynomial.hpp> | ||
using boost::math::tools::polynomial; | ||
#ifdef BOOST_HAS_FLOAT128 | ||
#include <boost/multiprecision/float128.hpp> | ||
using boost::multiprecision::float128; | ||
#endif | ||
#include "math_unit_test.hpp" | ||
|
||
#if __has_include(<Eigen/Eigenvalues>) | ||
|
||
void test_random_coefficients() { | ||
std::random_device rd; | ||
uint32_t seed = rd(); | ||
std::mt19937_64 mt(seed); | ||
std::uniform_real_distribution<double> unif(-1, 1); | ||
std::size_t n = seed % 3 + 3; | ||
std::vector<double> coeffs(n, std::numeric_limits<double>::quiet_NaN()); | ||
for (std::size_t i = 0; i < coeffs.size(); ++i) { | ||
coeffs[i] = unif(mt); | ||
} | ||
coeffs[coeffs.size() -1] = 1.0; | ||
auto p = polynomial(std::move(coeffs)); | ||
auto roots = p.roots(); | ||
CHECK_EQUAL(roots.size(), p.size() - 1); | ||
std::complex<double> root_product = -1; | ||
std::complex<double> root_sum = 0.0; | ||
for (auto const & root : roots) { | ||
root_product *= static_cast<std::complex<double>>(root); | ||
root_sum += static_cast<std::complex<double>>(root); | ||
} | ||
if (p.size() & 1) { | ||
root_product *= -1; | ||
} | ||
CHECK_ULP_CLOSE(root_product.real(), p[0], 1000); | ||
CHECK_LE(root_product.imag(), 1e-6); | ||
|
||
CHECK_LE(root_sum.imag(), 1e-7); | ||
CHECK_ULP_CLOSE(root_sum.real(), -p[p.size() - 2], 1000); | ||
} | ||
|
||
|
||
|
||
void test_wilkinson_polynomial() { | ||
// CoefficientList[Expand[(x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5)*(x - 6)*(x - 7)*(x - 8)*(x - 9)*(x - 10)], x] | ||
std::vector<float> coeffs{3628800.0, -10628640.0, 12753576.0, -8409500.0, 3416930.0, -902055.0, 157773.0, -18150.0, 1320.0, -55.0 ,1.0}; | ||
auto p = polynomial(std::move(coeffs)); | ||
auto roots = p.roots(); | ||
CHECK_EQUAL(roots.size(), p.size() - 1); | ||
std::complex<double> root_product = -1; | ||
std::complex<double> root_sum = 0.0; | ||
for (auto const & root : roots) { | ||
root_product *= static_cast<std::complex<double>>(root); | ||
root_sum += static_cast<std::complex<double>>(root); | ||
} | ||
if (p.size() & 1) { | ||
root_product *= -1; | ||
} | ||
CHECK_ABSOLUTE_ERROR(root_product.real(), double(p[0]), double(1e-3*p[0])); | ||
CHECK_LE(root_product.imag(), 1e-8); | ||
|
||
CHECK_LE(root_sum.imag(), 1e-8); | ||
CHECK_ABSOLUTE_ERROR(root_sum.real(), -double(p[p.size() - 2]), 1e-5); | ||
|
||
std::complex<double> c = 0.0; | ||
for (std::size_t i = 0; i < roots.size(); ++i) { | ||
auto ri = static_cast<std::complex<double>>(roots[i]); | ||
for (std::size_t j = i + 1; j < roots.size(); ++j) { | ||
c += ri*static_cast<std::complex<double>>(roots[j]); | ||
} | ||
} | ||
CHECK_ULP_CLOSE(p[p.size()-3], static_cast<float>(c.real()), 10); | ||
CHECK_ABSOLUTE_ERROR(0.0, c.imag(), 1e-8); | ||
|
||
} | ||
|
||
template<typename T> | ||
void test_singular_companion() | ||
{ | ||
std::vector<T> coeffs{0.0, 0.0, 1.0}; | ||
auto p = polynomial(std::move(coeffs)); | ||
auto roots = p.roots(); | ||
CHECK_EQUAL(roots.size(), p.size() - 1); | ||
for (std::size_t i = 0; i < roots.size() - 1; ++i) { | ||
CHECK_ABSOLUTE_ERROR(T(0), roots[i].real(), std::numeric_limits<T>::epsilon()); | ||
CHECK_ABSOLUTE_ERROR(T(0), roots[i].imag(), std::numeric_limits<T>::epsilon()); | ||
} | ||
} | ||
|
||
|
||
int main() | ||
{ | ||
test_random_coefficients(); | ||
test_singular_companion<float>(); | ||
test_singular_companion<double>(); | ||
#if BOOST_HAS_FLOAT128 | ||
test_singular_companion<float128>(); | ||
#endif | ||
test_wilkinson_polynomial(); | ||
return boost::math::test::report_errors(); | ||
} | ||
#endif |