-
Notifications
You must be signed in to change notification settings - Fork 227
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
simple_continued_fraction: added public functions to access and modify the coefficients #971
base: develop
Are you sure you want to change the base?
Changes from all commits
08f0490
b547ac7
1f3a079
d83bd53
25ab7c5
c4c4592
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,5 @@ | ||
// (C) Copyright Nick Thompson 2020. | ||
// (C) Copyright Matt Borland 2023. | ||
// Use, modification and distribution are subject to the | ||
// Boost Software License, Version 1.0. (See accompanying file | ||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|
@@ -14,12 +15,15 @@ | |
#include <limits> | ||
#include <stdexcept> | ||
#include <sstream> | ||
#include <utility> | ||
#include <cstdint> | ||
#include <cassert> | ||
|
||
#include <boost/math/tools/is_standalone.hpp> | ||
#ifndef BOOST_MATH_STANDALONE | ||
#include <boost/config.hpp> | ||
#ifdef BOOST_NO_CXX17_IF_CONSTEXPR | ||
#error "The header <boost/math/norms.hpp> can only be used in C++17 and later." | ||
#error "The header <boost/math/simple_continued_fraction.hpp> can only be used in C++17 and later." | ||
#endif | ||
#endif | ||
|
||
|
@@ -32,34 +36,59 @@ namespace boost::math::tools { | |
template<typename Real, typename Z = int64_t> | ||
class simple_continued_fraction { | ||
public: | ||
simple_continued_fraction(Real x) : x_{x} { | ||
typedef Z int_type; | ||
|
||
simple_continued_fraction(std::vector<Z> data) : b_{std::move(data)} { | ||
const size_t size_ = b_.size(); | ||
if (size_ == 0) { | ||
throw std::length_error("Array of coefficients is empty."); | ||
} | ||
|
||
for (size_t i = 1; i < size_; ++i) { | ||
if (b_[i] <= 0) { | ||
std::ostringstream oss; | ||
oss << "Found a negative partial denominator: b[" << i << "] = " << b_[i] << "."; | ||
throw std::domain_error(oss.str()); | ||
} | ||
} | ||
|
||
canonicalize(); | ||
} | ||
|
||
simple_continued_fraction(Real x) : b_{} { | ||
using std::floor; | ||
using std::abs; | ||
using std::sqrt; | ||
using std::isfinite; | ||
if (!isfinite(x)) { | ||
throw std::domain_error("Cannot convert non-finites into continued fractions."); | ||
throw std::domain_error("Cannot convert non-finites into continued fractions."); | ||
} | ||
|
||
if constexpr (std_precision == 2147483647) { | ||
precision_ = x.backend().precision(); | ||
} | ||
|
||
b_.reserve(50); | ||
Real bj = floor(x); | ||
b_.push_back(static_cast<Z>(bj)); | ||
if (bj == x) { | ||
b_.shrink_to_fit(); | ||
return; | ||
} | ||
|
||
const Real orig_x = x; | ||
x = 1/(x-bj); | ||
Real f = bj; | ||
if (bj == 0) { | ||
f = 16*(std::numeric_limits<Real>::min)(); | ||
} | ||
Real C = f; | ||
Real D = 0; | ||
int i = 0; | ||
// the "1 + i++" lets the error bound grow slowly with the number of convergents. | ||
// the "1 + i" lets the error bound grow slowly with the number of convergents. | ||
// I have not worked out the error propagation of the Modified Lentz's method to see if it does indeed grow at this rate. | ||
// Numerical Recipes claims that no one has worked out the error analysis of the modified Lentz's method. | ||
while (abs(f - x_) >= (1 + i++)*std::numeric_limits<Real>::epsilon()*abs(x_)) | ||
{ | ||
const Real eps_abs_orig_x = std::numeric_limits<Real>::epsilon()*abs(orig_x); | ||
for (int i = 0; abs(f - orig_x) >= (1 + i)*eps_abs_orig_x; ++i) { | ||
bj = floor(x); | ||
b_.push_back(static_cast<Z>(bj)); | ||
x = 1/(x-bj); | ||
|
@@ -74,16 +103,10 @@ class simple_continued_fraction { | |
D = 1/D; | ||
f *= (C*D); | ||
} | ||
// Deal with non-uniqueness of continued fractions: [a0; a1, ..., an, 1] = a0; a1, ..., an + 1]. | ||
// The shorter representation is considered the canonical representation, | ||
// so if we compute a non-canonical representation, change it to canonical: | ||
if (b_.size() > 2 && b_.back() == 1) { | ||
b_[b_.size() - 2] += 1; | ||
b_.resize(b_.size() - 1); | ||
} | ||
b_.shrink_to_fit(); | ||
|
||
for (size_t i = 1; i < b_.size(); ++i) { | ||
canonicalize(); | ||
|
||
const size_t size_ = b_.size(); | ||
for (size_t i = 1; i < size_; ++i) { | ||
if (b_[i] <= 0) { | ||
std::ostringstream oss; | ||
oss << "Found a negative partial denominator: b[" << i << "] = " << b_[i] << "." | ||
|
@@ -98,19 +121,20 @@ class simple_continued_fraction { | |
} | ||
} | ||
} | ||
|
||
Real khinchin_geometric_mean() const { | ||
if (b_.size() == 1) { | ||
const size_t size_ = b_.size(); | ||
if (size_ == 1) { | ||
return std::numeric_limits<Real>::quiet_NaN(); | ||
} | ||
using std::log; | ||
using std::exp; | ||
// Precompute the most probable logarithms. See the Gauss-Kuzmin distribution for details. | ||
// Example: b_i = 1 has probability -log_2(3/4) ~ .415: | ||
// A random partial denominator has ~80% chance of being in this table: | ||
const std::array<Real, 7> logs{std::numeric_limits<Real>::quiet_NaN(), Real(0), log(static_cast<Real>(2)), log(static_cast<Real>(3)), log(static_cast<Real>(4)), log(static_cast<Real>(5)), log(static_cast<Real>(6))}; | ||
const std::array<Real, 7> logs{std::numeric_limits<Real>::quiet_NaN(), static_cast<Real>(0), log(static_cast<Real>(2)), log(static_cast<Real>(3)), log(static_cast<Real>(4)), log(static_cast<Real>(5)), log(static_cast<Real>(6))}; | ||
Real log_prod = 0; | ||
for (size_t i = 1; i < b_.size(); ++i) { | ||
for (size_t i = 1; i < size_; ++i) { | ||
if (b_[i] < static_cast<Z>(logs.size())) { | ||
log_prod += logs[b_[i]]; | ||
} | ||
|
@@ -119,44 +143,57 @@ class simple_continued_fraction { | |
log_prod += log(static_cast<Real>(b_[i])); | ||
} | ||
} | ||
log_prod /= (b_.size()-1); | ||
log_prod /= (size_-1); | ||
return exp(log_prod); | ||
} | ||
|
||
Real khinchin_harmonic_mean() const { | ||
if (b_.size() == 1) { | ||
const size_t size_ = b_.size(); | ||
if (size_ == 1) { | ||
return std::numeric_limits<Real>::quiet_NaN(); | ||
} | ||
Real n = b_.size() - 1; | ||
Real n = size_ - 1; | ||
Real denom = 0; | ||
for (size_t i = 1; i < b_.size(); ++i) { | ||
for (size_t i = 1; i < size_; ++i) { | ||
denom += 1/static_cast<Real>(b_[i]); | ||
} | ||
return n/denom; | ||
} | ||
|
||
|
||
// Note that this also includes the integer part (i.e. all the coefficients) | ||
const std::vector<Z>& partial_denominators() const { | ||
return b_; | ||
} | ||
|
||
|
||
inline std::vector<Z>&& get_data() noexcept { | ||
return std::move(b_); | ||
} | ||
|
||
template<typename T, typename Z2> | ||
friend std::ostream& operator<<(std::ostream& out, simple_continued_fraction<T, Z2>& scf); | ||
|
||
private: | ||
const Real x_; | ||
static constexpr int std_precision = std::numeric_limits<Real>::max_digits10; | ||
|
||
void canonicalize() { | ||
// Deal with non-uniqueness of continued fractions: [a0; a1, ..., an, 1] = a0; a1, ..., an + 1]. | ||
// The shorter representation is considered the canonical representation, | ||
// so if we compute a non-canonical representation, change it to canonical: | ||
if (b_.size() > 2 && b_.back() == 1) { | ||
b_.pop_back(); | ||
b_.back() += 1; | ||
} | ||
b_.shrink_to_fit(); | ||
} | ||
|
||
std::vector<Z> b_; | ||
|
||
int precision_{std_precision}; | ||
}; | ||
|
||
|
||
template<typename Real, typename Z2> | ||
std::ostream& operator<<(std::ostream& out, simple_continued_fraction<Real, Z2>& scf) { | ||
constexpr const int p = std::numeric_limits<Real>::max_digits10; | ||
if constexpr (p == 2147483647) { | ||
out << std::setprecision(scf.x_.backend().precision()); | ||
} else { | ||
out << std::setprecision(p); | ||
} | ||
|
||
out << std::setprecision(scf.precision_); | ||
out << "[" << scf.b_.front(); | ||
if (scf.b_.size() > 1) | ||
{ | ||
|
@@ -171,6 +208,41 @@ std::ostream& operator<<(std::ostream& out, simple_continued_fraction<Real, Z2>& | |
return out; | ||
} | ||
|
||
template<typename Real, typename Z = std::int64_t> | ||
inline auto simple_continued_fraction_coefficients(Real x) | ||
{ | ||
auto temp = simple_continued_fraction<Real, Z>(x); | ||
return temp.get_data(); | ||
} | ||
|
||
// Can be used with `boost::rational` from <boost/rational.hpp> | ||
template <typename Rational, typename Real, typename Z = std::int64_t> | ||
inline Rational to_rational(const simple_continued_fraction<Real, Z>& scf) | ||
Comment on lines
+218
to
+220
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Does this work with other rational types (e.g. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I assume that |
||
{ | ||
using int_t = typename Rational::int_type; | ||
|
||
auto& coefs = scf.partial_denominators(); | ||
const size_t size_ = coefs.size(); | ||
assert(size_ >= 1); | ||
if (size_ == 1) return static_cast<int_t>(coefs[0]); | ||
|
||
// p0 = a0, p1 = a1.a0 + 1, pn = an.pn-1 + pn-2 for 2 <= n | ||
// q0 = 1, q1 = a1, qn = an.qn-1 + qn-2 for 2 <= n | ||
|
||
int_t p0 = coefs[0]; | ||
int_t p1 = p0*coefs[1] + 1; | ||
int_t q0 = 1; | ||
int_t q1 = coefs[1]; | ||
for (size_t i = 2; i < size_; ++i) { | ||
const Z cn = coefs[i]; | ||
const int_t pn = cn*p1 + p0; | ||
const int_t qn = cn*q1 + q0; | ||
p0 = std::exchange(p1, pn); | ||
q0 = std::exchange(q1, qn); | ||
} | ||
|
||
return {p1, q1}; | ||
} | ||
|
||
} | ||
#endif |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
As written this makes a copy of the data vector and then moves it into
b_
. I expect you want to take an r-value reference instead.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
simple_continued_fraction(std::vector<Z>)
can be used both withstd::vector<Z>&&
andconst std::vector<Z>&
arguments, whereassimple_continued_fraction(std::vector<Z>&&)
cannot be used withconst std::vector<Z>&
. In the case ofstd::vector<Z>&&
argument, there should no significant difference (std::vector<Z>
can require one more call to move constructor, which is negligible).More importantly, I'm pretty sure that your suggestion
simple_continued_fraction(std::vector<Z>&& data) : b_{data}
will call copy constructor ondata
, because you pass it as an lvalue, not as an rvalue.