Matteo Bottacini, matteo.bottacini@usi.ch
In this project it is discussed how to price European Call and Put options following the Black and Scholes model.
- Main variables that you can change
- Call option
- Put option
- Conclusion
Feel free to play with these variables and create different settings.
# main variables
asset_price = 100
asset_volatility = .3
strike_price = 100
time_to_expiration = 1
risk_free_rate = .01
The Black and Scholes formula for the Call European Options is the following: where:
- St : Stock price at time t
- X : Strike price of the option
- σ : Volatility term
- Φ : Cumulative normal distribution function
- B(t,T) : Continuous discount factor
- T : Time until maturity
- t : Current point in time
import math
from scipy.stats import norm
class EuropeanCall:
def call_price(
self, asset_price, asset_volatility, strike_price,
time_to_expiration, risk_free_rate
):
b = math.exp(-risk_free_rate * time_to_expiration)
x1 = math.log(asset_price / (b * strike_price)) + .5 * (asset_volatility * asset_volatility) * time_to_expiration
x1 = x1 / (asset_volatility * (time_to_expiration ** .5))
z1 = norm.cdf(x1)
z1 = z1 * asset_price
x2 = math.log(asset_price / (b * strike_price)) - .5 * (asset_volatility * asset_volatility) * time_to_expiration
x2 = x2 / (asset_volatility * (time_to_expiration ** .5))
z2 = norm.cdf(x2)
z2 = b * strike_price * z2
return z1 - z2
def __init__(
self, asset_price, asset_volatility, strike_price,
time_to_expiration, risk_free_rate
):
self.asset_price = asset_price
self.asset_volatility = asset_volatility
self.strike_price = strike_price
self.time_to_expiration = time_to_expiration
self.risk_free_rate = risk_free_rate
self.price = self.call_price(asset_price, asset_volatility, strike_price, time_to_expiration, risk_free_rate)
The Black and Scholes formula for the Put European Options is the following:
where:
- St : Stock price at time t
- X : Strike price of the option
- σ : Volatility term
- Φ : Cumulative normal distribution function
- B(t,T) : Continuous discount factor
- T : Time until maturity
- t : Current point in time
import math
from scipy.stats import norm
class EuropeanPut:
def put_price(
self, asset_price, asset_volatility, strike_price,
time_to_expiration, risk_free_rate
):
b = math.exp(-risk_free_rate * time_to_expiration)
x1 = math.log((b * strike_price) / asset_price) + .5 * (asset_volatility * asset_volatility) * time_to_expiration
x1 = x1 / (asset_volatility * (time_to_expiration ** .5))
z1 = norm.cdf(x1)
z1 = b * strike_price * z1
x2 = math.log((b * strike_price) / asset_price) - .5 * (asset_volatility * asset_volatility) * time_to_expiration
x2 = x2 / (asset_volatility * (time_to_expiration ** .5))
z2 = norm.cdf(x2)
z2 = asset_price * z2
return z1 - z2
def __init__(
self, asset_price, asset_volatility, strike_price,
time_to_expiration, risk_free_rate
):
self.asset_price = asset_price
self.asset_volatility = asset_volatility
self.strike_price = strike_price
self.time_to_expiration = time_to_expiration
self.risk_free_rate = risk_free_rate
self.price = self.put_price(asset_price, asset_volatility, strike_price, time_to_expiration, risk_free_rate)
In the last section are shown the results.
# results
ec = EuropeanCall(asset_price=asset_price,
asset_volatility=asset_volatility,
strike_price=strike_price,
time_to_expiration=time_to_expiration,
risk_free_rate=risk_free_rate)
print("European call price is: " + str(ec.price))
ep = EuropeanPut(asset_price=asset_price,
asset_volatility=asset_volatility,
strike_price=strike_price,
time_to_expiration=time_to_expiration,
risk_free_rate=risk_free_rate)
print("European put price is: " + str(ep.price))