Skip to content

bugfloyd/video-action-recognizer

Repository files navigation

Video Action Recognizer [In Development]

This project contains all necessary components and services for the Video Action Recognizer application.

Table of Contents

Components

Serverless Analysis Core
Implemented in Python, this component performs video analysis using TensorFlow and the Movinet kinetics-600 model. It operates as a serverless Fargate task within AWS ECS.

Upload Listener Lambda
A Python AWS Lambda function that responds to S3 'object put' events by initiating the Analysis Core ECS task to process the uploaded video file.

Serverless Backend
In development, this component will provide RESTful APIs, facilitating server-side interactions and integrations with AWS services.

UI
The user interface is built with TypeScript and React.js, allowing for video or GIF file uploads and presenting analysis results. (Under Development)

Infrastructure Code
Infrastructure as Code (IaC) managed through Terraform scripts automates the setup of the required AWS infrastructure.

Deployment

Ensure the AWS CLI is installed and configured with an access key pair before beginning the deployment process.

Terraform Backend Setup

Navigate to the infrastructure/init directory and create a terraform.tfvars file:

aws_region             = "<AWS_REGION>"
terraform_state_bucket = "<TERRAFORM_STATE_BUCKET_NAME>"
lambda_bucket          = "<LAMBDA_BUCKET_NAME>"

# Optional variables:
github_repo            = "<GITHUB_REPO>" # e.g. bugfloyd/video-action-recognizer | if you need an IAM role  to be assumed with GitHub WebIdentity
main_domain            = "<MAIN_DOMAIN_NAME>" # e.g. example.com | if you want to use a custom domain

Initialize Terraform:

terraform init

Deploy the resources:

terraform plan -out init.tfplan
terraform apply "init.tfplan"

Generate CloudFront Key Pair

Inside the init directory of infra directory:

./generate-cloudfront-key.sh [<AWS_PROFILE_NAME>]

Listener Lambda

Navigate to the upload-listener directory:

cd upload-listener

Package and deploy the Lambda function:

./deploy.sh --bucket <LAMBDA_BUCKET_NAME> [--profile <name>] [--region <value>]

Obtain the uploaded function bundle SHA sum from the script output and use it in the Main Infrastructure section.

RESTful Backend API

For each of backend modules build zip bundle and upload it to S3. Get the bundle SHA sum.

cd rest-backend


./deploy.sh --bucket <LAMBDA_BUCKET_NAME> --skip-infra-update true [--profile <name>] [--region <value>]

Accepted values for module name argument are: users, files, results

Main Infrastructure

Navigate to the infrastructure directory and create a backend configuration file backend_config.hcl:

bucket         = "<TERRAFORM_STATE_BUCKET_NAME>"
region         = "<AWS_REGION>"

Create a terraform.tfvars file:

aws_region                        = "<AWS_REGION>"
input_bucket                      = "<INPUT_BUCKET_NAME>"
output_bucket                     = "<OUTPUT_BUCKET_NAME>"
lambda_bucket                     = "<LAMBDA_BUCKET_NAME>"
upload_listener_lambda_bundle_sha = "<UPLOAD_LISTENER_LAMBDA_BUNDLE_SHA>"
rest_backend_lambda_bundle_sha    = "<REST_BACKEND_LAMBDA_BUNDLE_SHA>"
cognito_domain_prefix             = "<AWS_COGNITO_DOMAIN_PREFIX>"

# Optional:
setup_vpn                         = true
main_domain_zone_id               = "<MAIN_HOSTED_ZONE_ID>" # Obtained from init infra step

Initialize Terraform with the S3 backend:

terraform init -backend-config="backend_config.hcl"

If you pass true for setup_vpn, you have to create a CA certificate and a key using OpenSSL and place them in infrastructure/vpn/vpn_ca.key and infrastructure/vpn/vpn_ca.pem.

Deploy the main infrastructure:

terraform plan -out main.tfplan
terraform apply "main.tfplan"

Get api_gateway_id, cognito_user_pool_client_id, cognito_user_pool_domain, cognito_user_pool_id, and cognito_user_pool_resource_server_identifier from terraform output.

To view the state of deployed resources:

terraform state list

Analysis Core

Build and push the Docker image:

aws ecr get-login-password --region <AWS_REGION> | \
docker login --username AWS --password-stdin \
<ACCOUNT_ID>.dkr.ecr.<AWS_REGION>.amazonaws.com
docker buildx build --platform=linux/amd64 \
-t <ACCOUNT_ID>.dkr.ecr.<AWS_REGION>.amazonaws.com/video-action-regognizer:latest \
.
docker push <ACCOUNT_ID>.dkr.ecr.<AWS_REGION>.amazonaws.com/video-action-regognizer:latest

Create First Admin User

In order to send requests to the deployed serverless RESTful API, you need to create the first admin user in AWS Cognito:

cd rest-backend

./init.sh --user-pool-id <value> --email <value> --given-name <value> --family-name <value> --password <value> [--profile <name>] [--region <value>]

Development

Updating Lambda Functions

  1. Re-run the code to build and upload the lambda function.
  2. Replace the *_lambda_bundle_sha in terraform.tfvars with the newly obtained SHA sum.
  3. Apply the changes using Terraform:
terraform plan -out main.tfplan
terraform apply "main.tfplan"
  1. For the rest backend lambda functions, re-deploy the API for dev stage from AWS console.

Run RESTful Backend Locally

You can use AWS SAM to build and invoke backend lambda functions locally. You can find some mock event input in rest-backend/mock-events directory.

Go to one of the backend lambda functions’ directory and compile TypeScript and build the bundle:

cd rest-backend
npm run build

Invoke the lambda locally using AWS SAM CLI and the related mock event:

sam local invoke VarBackend \
-e mock-events/createUser.json \
--template template.yaml \
--parameter-overrides \
UserPoolId=<USER_POOL_ID>

Usage (Analysis MVP)

Upload a mp4 video or a gif file to S3 <INPUT_BUCKET_NAME> and see the analysis logs and results in CloudWatch.

API Documentation

For more information, see our API Reference.

Contributing

We welcome contributions from the community. If you'd like to contribute, please fork the repository and make your changes, then create a pull request against the main branch.

License

Code released under the GNU GPL v3 License.

About

Cloud-native serverless video analysis using AI

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published