v0.3.2
🚀Support Multi-GPU Parallel Inference Speedup for CogVideoX
Everything works out of the box!
import torch
import torch.distributed as dist
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
dist.init_process_group()
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
torch_dtype=torch.bfloat16,
).to(f"cuda:{dist.get_rank()}")
# pipe.enable_model_cpu_offload()
# pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
from para_attn.context_parallel import init_context_parallel_mesh
from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
parallelize_pipe(
pipe,
mesh=init_context_parallel_mesh(
pipe.device.type,
max_batch_dim_size=2,
max_ring_dim_size=2,
),
)
torch._inductor.config.reorder_for_compute_comm_overlap = True
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune-no-cudagraphs")
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
# generator=torch.Generator(device=pipe.device).manual_seed(42),
).frames[0]
if dist.get_rank() == 0:
print("Saving video to cogvideox.mp4")
export_to_video(video, "cogvideox.mp4", fps=8)
dist.destroy_process_group()