Data Vault is a library for storing and retrieving Credit Card data via Tokens.
# Cargo.toml
[dependencies]
data_vault = "^0.3"
# Note: showing Redis and Postgres backend settings
# REDIS CONFIGURATION
REDIS_URL=redis://:foobared@127.0.0.1/
# REDIS_POOL_MAX_SIZE=16
# POSTGRES CONFIGURATION
POSTGRES.HOST=127.0.0.1
POSTGRES.USER=data_vault
POSTGRES.PASSWORD=foobared
POSTGRES.DBNAME=data_vault
POSTGRES.POOL.MAX_SIZE=100000
POSTGRES.POOLTIMEOUTS_WAIT_SECS=60
POSTGRES.POOL.TIMEOUTS_WAIT_NANOS=0
# ENCRYPTION KEYS
ENCRYPTED_DATA_VAULT_KEY=000102030405060708090a0b0c0d0e0f
ENCRYPTED_DATA_VAULT_IV=f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff
// example.rs
// traits
use data_vault::DataVault;
use data_vault::encryption::traits::Encryption;
// Interchangeable backend
use data_vault::RedisDataVault;
// Interchangeable encryption
use data_vault::encryption::AesGcmSivEncryption;
// Interchangeable tokenizer
use data_vault::tokenizer::Blake3Tokenizer;
// credit card type
use credit_card::CreditCard;
use tokio;
#[tokio::main(flavor = "multi_thread")]
async fn main() {
let vault = RedisDataVault::<AesGcmSivEncryption, Blake3Tokenizer>::new().unwrap();
let cc = CreditCard {
number: "4111111111111111".to_string(),
cardholder_name: "Graydon Hoare".to_string(),
expiration_month: "01".to_string(),
expiration_year: "2023".to_string(),
brand: None,
security_code: None
};
let token = vault.store_credit_card(&cc).await.unwrap();
let credit_card = vault.retrieve_credit_card(&token.to_string()).await.unwrap();
assert_eq!(credit_card.number, cc.number)
}
- Store Credit Cards
- Store
String
- Automatic Encryption and Decryption
- Blake3 tokenization
- Redis pool
- Postgres pool
- Configurable from .env file or Environment Variables
- Interchangeable Backend
- Interchangeable Encryption
- Interchangeable Tokenization hasher
This example output the following performance stats Tokenize and stored ~18,000 credit cards per second.
tokenized and stored 100000 credit cards in 5.550836728s
retrieved 100000 credit cards in 5.8276298s
tokenized, stored, and retrieved 100000 credit cards in 11.378466528s
This example output the following performance stats Tokenize and Store ~3,000 credit cards per second.
tokenized and stored 1000 credit cards in 336.54986ms
retrieved 1000 credit cards in 54.622188ms
tokenized, stored, and retrieved 1000 credit cards in 391.172048ms