Skip to content

A simplified and fresh workflow for doing machine learning with tidymodels

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

cimentadaj/tidyflow

Repository files navigation

tidyflow

R build status Codecov test coverage

What is a tidyflow?

A tidyflow is a fork of workflows that can bundle together your data, splitting, resampling, preprocessing, modeling, and grid search. Having all these steps separated into different objects can prove to be difficult. One can predict on the testing data by mistake, forget whether the recipe has been baked or not, or simply do not remember the name of all the tuning parameters to specify in the grid. tidyflow is a package aimed at bundling all of these steps into a coherent flow, as is represented below:

Among the advantages are:

  • You don’t have to keep track of separate objects in your workspace.

  • The split, resample, recipe prepping, model fitting and grid search can be executed using a single call to fit().

Installation

You can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("cimentadaj/tidyflow")

Example

tidyflow builds upon the work in tidymodels to create an expressive workflow for doing machine learning. Let’s suppose we want to fit a linear model to the model mpg ~ . on the training data of mtcars. We can define the split (training/testing), define our formula, define the statistical model and fit the tidyflow:

library(tidymodels)
library(tidyflow)
# Build tidyflow
tflow <-
  mtcars %>%
  tidyflow() %>%
  plug_split(initial_split) %>%
  plug_formula(mpg ~ .) %>%
  plug_model(linear_reg() %>% set_engine("lm"))

# Fit model
fit_m <- fit(tflow)

fit_m
#> ══ Tidyflow [trained] ══════════════════════════════════════════════════════════
#> Data: 32 rows x 11 columns
#> Split: initial_split w/ default args
#> Formula: mpg ~ .
#> Resample: None
#> Grid: None
#> Model:
#> Linear Regression Model Specification (regression)
#> 
#> Computational engine: lm 
#> 
#> ══ Results ═════════════════════════════════════════════════════════════════════
#> 
#> 
#> Fitted model:
#> 
#> Call:
#> stats::lm(formula = ..y ~ ., data = data)
#> 
#> Coefficients:
#> 
#> ...
#> and 5 more lines.

tidyflow will execute this order of steps: data -> split training/testing -> apply the formula and model to the training data. With this final model we can use the predict_training function to automatically predict on the training data:

# Predict on testing
fit_m %>%
  predict_training()
#> # A tibble: 24 x 12
#>      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb .pred
#>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1  21       6  160    110  3.9   2.62  16.5     0     1     4     4  22.9
#>  2  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1  25.4
#>  3  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1  22.0
#>  4  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2  18.4
#>  5  24.4     4  147.    62  3.69  3.19  20       1     0     4     2  23.0
#>  6  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2  24.1
#>  7  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4  18.6
#>  8  17.8     6  168.   123  3.92  3.44  18.9     1     0     4     4  19.1
#>  9  17.3     8  276.   180  3.07  3.73  17.6     0     0     3     3  15.2
#> 10  15.2     8  276.   180  3.07  3.78  18       0     0     3     3  15.3
#> # … with 14 more rows

Similarly, you can use predict_testing for predicting on the testing data.

However, the usefulness of tidyflow is clearer when we perform more complex modelling. Let’s extend the previous model to include a cross-validation resample and to perform a grid search for a regularized regression:

# Grid search will be performed on the penalty and mixture arguments
regularized_mod <- linear_reg(penalty = tune(), mixture = tune()) %>% set_engine("glmnet")

# Build tidyflow
tflow <-
  mtcars %>% # Start with the data
  tidyflow() %>%
  plug_split(initial_split) %>% # Split into training/testing
  plug_formula(mpg ~ .) %>% # Define model specification
  plug_resample(vfold_cv) %>% # Specify resample: cross-validation
  plug_grid(grid_regular) %>%  # Define type of grid search
  plug_model(regularized_mod) # Define the type of model

# Fit model
fit_m <- fit(tflow)
fit_m
#> ══ Tidyflow [tuned] ════════════════════════════════════════════════════════════
#> Data: 32 rows x 11 columns
#> Split: initial_split w/ default args
#> Formula: mpg ~ .
#> Resample: vfold_cv w/ default args
#> Grid: grid_regular w/ default args
#> Model:
#> Linear Regression Model Specification (regression)
#> 
#> Main Arguments:
#>   penalty = tune()
#>   mixture = tune()
#> 
#> Computational engine: glmnet 
#> 
#> ══ Results ═════════════════════════════════════════════════════════════════════
#> 
#> Tuning results: 
#> 
#> # A tibble: 5 x 4
#>   splits         id     .metrics          .notes          
#>   <list>         <chr>  <list>            <list>          
#> 1 <split [21/3]> Fold01 <tibble [18 × 6]> <tibble [0 × 1]>
#> 2 <split [21/3]> Fold02 <tibble [18 × 6]> <tibble [0 × 1]>
#> 3 <split [21/3]> Fold03 <tibble [18 × 6]> <tibble [0 × 1]>
#> 4 <split [21/3]> Fold04 <tibble [18 × 6]> <tibble [0 × 1]>
#> 5 <split [22/2]> Fold05 <tibble [18 × 6]> <tibble [0 × 1]>
#> 
#> ... and 5 more lines.

The result is not a final model as before, but rather a grid search result. We can extract that and visualize it:

# Extract tuning grid
fit_m %>%
  pull_tflow_fit_tuning() %>%
  autoplot()

You can finalize the tidyflow with complete_tflow which will select the best tuning parameters and train the model on the entire training data. This final model can be used for predicting on the training data and on the testing data automatically:

# Fit best model on the entire training data
final_m <-
  fit_m %>%
  complete_tflow(metric = "rmse")

# Predict on train
final_m %>%
  predict_training()
#> # A tibble: 24 x 12
#>      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb .pred
#>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1  21       6  160    110  3.9   2.62  16.5     0     1     4     4  22.5
#>  2  21       6  160    110  3.9   2.88  17.0     0     1     4     4  22.1
#>  3  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1  20.6
#>  4  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2  16.6
#>  5  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1  20.3
#>  6  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4  14.1
#>  7  24.4     4  147.    62  3.69  3.19  20       1     0     4     2  22.7
#>  8  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2  23.4
#>  9  17.8     6  168.   123  3.92  3.44  18.9     1     0     4     4  19.6
#> 10  16.4     8  276.   180  3.07  4.07  17.4     0     0     3     3  15.3
#> # … with 14 more rows

# Predict on testing
final_m %>%
  predict_testing()
#> # A tibble: 8 x 12
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb .pred
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  22.8     4 108      93  3.85  2.32  18.6     1     1     4     1  26.9
#> 2  19.2     6 168.    123  3.92  3.44  18.3     1     0     4     4  19.5
#> 3  14.7     8 440     230  3.23  5.34  17.4     0     0     3     4  10.7
#> 4  15.2     8 304     150  3.15  3.44  17.3     0     0     3     2  17.3
#> 5  13.3     8 350     245  3.73  3.84  15.4     0     0     3     4  14.0
#> 6  19.2     8 400     175  3.08  3.84  17.0     0     0     3     2  15.5
#> 7  27.3     4  79      66  4.08  1.94  18.9     1     1     4     1  28.4
#> 8  30.4     4  95.1   113  3.77  1.51  16.9     1     1     5     2  27.3

Code of Conduct

Please note that the tidyflow project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

About

A simplified and fresh workflow for doing machine learning with tidymodels

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published