Skip to content

An official implementation of "Diversify-and-Aggregate: Augmenting Replay with Generative Modeling Make Stronger Incremental Segmentation Models".

License

Notifications You must be signed in to change notification settings

cjfcsjt/Diversify-and-Aggregate

Repository files navigation

Diversify-and-Aggregate: Augmenting Replay with Generative Modeling Make Stronger Incremental Segmentation Models

This is an official implementation of the paper "Diversify-and-Aggregate: Augmenting Replay with Generative Modeling Make Stronger Incremental Segmentation Models".

Pre-requisites

This repository has been tested with the following libraries:

  • Python (3.9)
  • Pytorch (2.2.0)

Getting Started

Datasets

PASCAL VOC 2012

We use augmented 10,582 training samples and 1,449 validation samples for PASCAL VOC 2012. You can download the original dataset in here. To train our model with augmented samples, please download labels of augmented samples ('SegmentationClassAug') and file names ('train_aug.txt'). The structure of data path should be organized as follows:

└── /dataset/VOC2012
    ├── Annotations
    ├── ImageSets
    │   └── Segmentation
    │       ├── train_aug.txt
    │       └── val.txt
    ├── JPEGImages
    ├── SegmentationClass
    └── SegmentationClassAug

ADE20K

We use 20,210 training samples and 2,000 validation samples for ADE20K. You can download the dataset in here. The structure of data path should be organized as follows:

└── /dataset/ADEChallengeData2016
    ├── annotations
    ├── images
    ├── objectInfo150.txt
    └── sceneCategories.txt

Training

PASCAL VOC 2012

# An example srcipt for 15-5 overlapped setting of PASCAL VOC

GPU=0,1
BS=16  # Total 32
SAVEDIR='saved_voc_pos2'

TASKSETTING='overlap'  # or 'disjoint'
TASKNAME='15-5' # or ['15-1', '19-1', '10-1', '5-3']
EPOCH=60
INIT_LR=0.001
LR=0.0001
INIT_POSWEIGHT=2
MEMORY_SIZE=100 

NAME='DA'
python train_voc.py -c configs/config_voc.json \
-d ${GPU} --multiprocessing_distributed --save_dir ${SAVEDIR} --name ${NAME} \
--task_name ${TASKNAME} --task_setting ${TASKSETTING} --task_step 0 --lr ${INIT_LR} --bs ${BS} --pos_weight_new ${INIT_POSWEIGHT}

python train_voc.py -c configs/config_voc.json \
-d ${GPU} --multiprocessing_distributed --save_dir ${SAVEDIR} --name ${NAME} \
--task_name ${TASKNAME} --task_setting ${TASKSETTING} --task_step 1 --lr ${LR} --bs ${BS} --freeze_bn --mem_size ${MEMORY_SIZE} --pos_weight_new 1 --pos_weight_old 1 --pkd 5 --mbce_new_extra 1 --mbce_old_extra 1 --use_Replace

ADE20K

# An example srcipt for 50-50 overlapped setting of ADE20K

GPU=0,1
BS=12  # Total 24
SAVEDIR='saved_ade'

TASKSETTING='overlap'
TASKNAME='50-50' # or ['100-10', '100-50']
EPOCH=100
INIT_LR=0.0025
LR=0.00025
MEMORY_SIZE=300

NAME='DA'
python train_ade.py -c configs/config_ade.json \
-d ${GPU} --multiprocessing_distributed --save_dir ${SAVEDIR} --name ${NAME} \
--task_name ${TASKNAME} --task_setting ${TASKSETTING} --task_step 0 --lr ${INIT_LR} --bs ${BS}

python train_ade.py -c configs/config_ade.json \
-d ${GPU} --multiprocessing_distributed --save_dir ${SAVEDIR} --name ${NAME} \
--task_name ${TASKNAME} --task_setting ${TASKSETTING} --task_step 1 --lr ${LR} --bs ${BS} --freeze_bn --mem_size ${MEMORY_SIZE} --pos_weight_new 1 --pos_weight_old 1 --pkd 1 --mbce_new_extra 1 --mbce_old_extra 1 --use_Replace

Testing

PASCAL VOC 2012

python eval_voc.py -d 0 -r path/to/weight.pth

We provide pretrained weights, augmented images and adapter checkpoint (lora, text token) and configuration files from this link.

  • configuration files.
  • pretrained weights,
  • augmented images and adapter checkpoint (lora, text token)
  • code for fine-tuning MR-LoRA (coming soon)

Acknowledgements

  • This template is borrowed from pytorch-template.
  • This code is based on DKD (2022-NeurIPS Decomposed Knowledge Distillation for Class-Incremental Semantic Segmentation).

About

An official implementation of "Diversify-and-Aggregate: Augmenting Replay with Generative Modeling Make Stronger Incremental Segmentation Models".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages