Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

extract_features support masks #344

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 17 additions & 4 deletions hloc/extract_features.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,9 +170,10 @@ class ImageDataset(torch.utils.data.Dataset):
'interpolation': 'cv2_area', # pil_linear is more accurate but slower
}

def __init__(self, root, conf, paths=None):
def __init__(self, root, conf, paths=None, mask_dir: Optional[Path]=None):
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
self.root = root
self.mask_dir = mask_dir

if paths is None:
paths = []
Expand Down Expand Up @@ -220,6 +221,10 @@ def __getitem__(self, idx):
'image': image,
'original_size': np.array(size),
}
if self.mask_dir:
mask_path = self.mask_dir / f'{name}.png'
if mask_path.exists():
data['mask'] = read_image(mask_path, True)
return data

def __len__(self):
Expand All @@ -233,11 +238,12 @@ def main(conf: Dict,
as_half: bool = True,
image_list: Optional[Union[Path, List[str]]] = None,
feature_path: Optional[Path] = None,
overwrite: bool = False) -> Path:
overwrite: bool = False,
mask_dir: Optional[Path] = None) -> Path:
logger.info('Extracting local features with configuration:'
f'\n{pprint.pformat(conf)}')

dataset = ImageDataset(image_dir, conf['preprocessing'], image_list)
dataset = ImageDataset(image_dir, conf['preprocessing'], image_list, mask_dir)
if feature_path is None:
feature_path = Path(export_dir, conf['output']+'.h5')
feature_path.parent.mkdir(exist_ok=True, parents=True)
Expand Down Expand Up @@ -268,6 +274,12 @@ def main(conf: Dict,
pred['scales'] *= scales.mean()
# add keypoint uncertainties scaled to the original resolution
uncertainty = getattr(model, 'detection_noise', 1) * scales.mean()
if 'mask' in data:
mask = data['mask'][0] # cuz `batch_size == 1`
valid_keypoint = mask[pred['keypoints'][:, 1].astype('int'), pred['keypoints'][:, 0].astype('int')]
pred['keypoints'] = pred['keypoints'][valid_keypoint > 0]
pred['descriptors'] = pred['descriptors'][:, valid_keypoint > 0]
pred['scores'] = pred['scores'][valid_keypoint > 0]

if as_half:
for k in pred:
Expand Down Expand Up @@ -307,5 +319,6 @@ def main(conf: Dict,
parser.add_argument('--as_half', action='store_true')
parser.add_argument('--image_list', type=Path)
parser.add_argument('--feature_path', type=Path)
parser.add_argument('--mask_dir', type=Path)
args = parser.parse_args()
main(confs[args.conf], args.image_dir, args.export_dir, args.as_half)
main(confs[args.conf], args.image_dir, args.export_dir, args.as_half, mask_dir=args.mask_dir)
2 changes: 1 addition & 1 deletion hloc/extractors/disk.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,6 @@ def _forward(self, data):
)
return {
'keypoints': [f.keypoints for f in features],
'keypoint_scores': [f.detection_scores for f in features],
'scores': [f.detection_scores for f in features],
'descriptors': [f.descriptors.t() for f in features],
}
9 changes: 7 additions & 2 deletions hloc/pairs_from_poses.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
import scipy.spatial

from . import logger
from .utils.read_write_model import read_images_binary
from .utils.read_write_model import read_images_binary, read_images_text
from .pairs_from_retrieval import pairs_from_score_matrix

DEFAULT_ROT_THRESH = 30 # in degrees
Expand Down Expand Up @@ -41,7 +41,12 @@ def get_pairwise_distances(images):

def main(model, output, num_matched, rotation_threshold=DEFAULT_ROT_THRESH):
logger.info('Reading the COLMAP model...')
images = read_images_binary(model / 'images.bin')
if (model / 'images.bin').exists():
images = read_images_binary(model / 'images.bin')
elif (model / 'images.txt').exists():
images = read_images_text(model / 'images.txt')
else:
raise FileNotFoundError(f"`images.txt|bin` doesn't exist.")

logger.info(
f'Obtaining pairwise distances between {len(images)} images...')
Expand Down