Simple, fully local retrieval-augmented-generation powered by Ollama, Embedchain, and Chainlit.
- LLM: dolphin-mixtral
- Inference: Ollama
- Web UI: Chainlit
- RAG & Chat: Embedchain
- Vector DB: Chroma
The embedchain config uses dolphin-mixtral by default, but you can swap this out for any other model.
git clone https://github.com/deadbits/moce.git
cd moce
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
This is required during the first run to download the embedding model.
export HUGGINGFACE_API_TOKEN="hf_..."
docker pull chromadb/chroma
docker run -d -p 8000:8000 chromadb/chroma
chainlit run moce.py --port 8888
command | action |
---|---|
/add | add new document to the knowledge base |
/kb | return last 25 documents added to knowledge base |
/help | display this table |
* | all other input is chat |
You can start a conversation by asking a question or sharing a document with the /add
command.
Add data to knowledge base
/add https://huggingface.co/blog/shivance/illustrated-llm-os
Document names added to your knowledge base are tracked in data/indexed.json
.
The /kb
command will return the last 25 document names.