Skip to content

devmukul44/spark-structured-streaming-demo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spark Structured Streaming Demo App

Structure of the code

We can create the entry point of our application by writing a main function. In Scala, a static method needs to be in an object, not in a class, so let’s create one:

object ClickstreamExecutor {
  def main(args: Array[String]): Unit = {
    new StreamsProcessor("localhost:9092").process()
  }
}

We can now initialize SparkSession and Logger:

   // SparkSession
    val spark = SparkSession.builder
      .master("yarn")
      .appName(getClass.getSimpleName)
      .enableHiveSupport()
      .getOrCreate()

    // Root Logger Level
    val rootLogger = Logger.getRootLogger
    rootLogger.setLevel(Level.ERROR)

Reading Data Streams from Kafka

Code:

    val inputDf: DataFrame = spark
      .readStream
      .format("kafka")
      .option("kafka.bootstrap.servers", "10.140.10.108:9092, 10.140.10.103:9092, 10.140.10.11:9092")
      .option("subscribe", "kafka-clickstream-topic")
      .load()

Input Streaming DataFrame

Properties:

  • readStream -> read streaming data in as a DataFrame
  • format -> Specifies the input data source format. - kafka, file_system...
  • kafka.bootstrap.servers -> Stringified List of Kafka host ips
  • subscribe -> Kafka Topic Name

Schema:

 root
      |-- key: binary (nullable = true)
      |-- value: binary (nullable = true)
      |-- topic: string (nullable = true)
      |-- partition: integer (nullable = true)
      |-- offset: long (nullable = true)
      |-- timestamp: timestamp (nullable = true)
      |-- timestampType: integer (nullable = true)

Preparing the output

Output Sink

Output Sink Properties:

  • writeStream -> saving the content of the streaming Dataset out into external storage.
  • partitionBy -> output partition columns
  • outputMode -> Type of output sink - Append, complete, update
  • trigger -> Trigger for spark mini batch stream query
  • format -> Output format - kafka, parquet ...
  • path -> Output Location for the file_system ...
  • checkpointLocation -> Location for saving streaming metadata - write-ahead-logs, kafka-offsets, aggregated-data ...

streamingQuery Properties:

  • awaitTermination -> Waits for the termination of this query, either by query.stop() or by an exception.
  • stop -> Stops the execution of this query if it is running.
  • status -> Returns the current status of the query.

Code:

    // File Output Sink
    val fileOutputSink = flattenedValueDF
      .writeStream
      .partitionBy(outputPartitionColumnList: _*)
      .outputMode(outputModeType)
      .trigger(Trigger.ProcessingTime(outputMiniBatchTriggerInterval))
      .format(outputFormat)
      .option("path", outputLocation)
      .option("checkpointLocation", outputCheckpointLocation)
      .start()

    fileOutputSink.awaitTermination()
    fileOutputSink.stop()
    fileOutputSink.status

About

Spark Structured Streaming Demo App

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages