Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Skip slow calculation of reference C6 #39

Merged
merged 9 commits into from
Dec 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion src/tad_dftd3/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@
"""
import torch

from . import damping, data, defaults, disp, model, ncoord, reference
from . import constants, damping, data, defaults, disp, model, ncoord, reference
from ._typing import (
DD,
CountingFunction,
Expand Down Expand Up @@ -134,6 +134,12 @@ def dftd3(
"""
dd: DD = {"device": positions.device, "dtype": positions.dtype}

if torch.max(numbers) >= constants.MAX_ELEMENT:
raise ValueError(
f"No D3 parameters available for Z > {constants.MAX_ELEMENT-1} "
f"({constants.PSE_Z2S[constants.MAX_ELEMENT]})."
)

if cutoff is None:
cutoff = torch.tensor(defaults.D3_DISP_CUTOFF, **dd)
if ref is None:
Expand Down
9 changes: 8 additions & 1 deletion src/tad_dftd3/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,16 @@
This module contains fundamental constants and conversion factors.
"""

MAX_ELEMENT = 104
"""Atomic number (+1 for dummy) of last element supported by DFT-D3."""

BOHR_TO_ANGSTROM = 0.529177210903
"""Bohr radius in Angstroms."""

ANGSTROM_TO_BOHR = 1.0 / BOHR_TO_ANGSTROM
"""Conversion factor from Angstrom to Bohr."""

PSE = {
PSE_S2Z = {
"H": 1,
"He": 2,
"Li": 3,
Expand Down Expand Up @@ -142,3 +145,7 @@
"Ts": 117,
"Og": 118,
}
"""PSE with mapping from symbol to atomic number."""

PSE_Z2S = {v: k for k, v in PSE_S2Z.items()}
"""PSE with mapping from atomic number to symbol."""
8 changes: 7 additions & 1 deletion src/tad_dftd3/disp.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@
"""
import torch

from . import data, defaults
from . import constants, data, defaults
from ._typing import DD, Any, DampingFunction, Dict, Optional, Tensor
from .damping import dispersion_atm, rational_damping
from .utils import cdist, real_pairs
Expand Down Expand Up @@ -103,6 +103,7 @@ def dispersion(
cutoff = torch.tensor(defaults.D3_DISP_CUTOFF, **dd)
if r4r2 is None:
r4r2 = data.sqrt_z_r4_over_r2.to(**dd)[numbers]

if numbers.shape != positions.shape[:-1]:
raise ValueError(
"Shape of positions is not consistent with atomic numbers.",
Expand All @@ -111,6 +112,11 @@ def dispersion(
raise ValueError(
"Shape of expectation values is not consistent with atomic numbers.",
)
if torch.max(numbers) >= constants.MAX_ELEMENT:
raise ValueError(
f"No D3 parameters available for Z > {constants.MAX_ELEMENT-1} "
f"({constants.PSE_Z2S[constants.MAX_ELEMENT]})."
)

# two-body dispersion
energy = dispersion2(
Expand Down
Binary file removed src/tad_dftd3/reference-c6.npy
Binary file not shown.
Binary file added src/tad_dftd3/reference-c6.pt
Binary file not shown.
54 changes: 30 additions & 24 deletions src/tad_dftd3/reference.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,21 @@
def _load_cn(
dtype: torch.dtype = torch.double, device: Optional[torch.device] = None
) -> Tensor:
"""
Load reference coordination numbers.

Parameters
----------
dtype : torch.dtype, optional
Floating point precision for tensor. Defaults to `torch.double`.
device : Optional[torch.device], optional
Device of tensor. Defaults to None.

Returns
-------
Tensor
Reference coordination numbers.
"""
return torch.tensor(
[
[-1.0000, -1.0000, -1.0000, -1.0000, -1.0000, -1.0000, -1.0000], # None
Expand Down Expand Up @@ -146,31 +161,22 @@ def _load_c6(
dtype: torch.dtype = torch.double, device: Optional[torch.device] = None
) -> Tensor:
"""
Load reference C6 coefficients from file and fill them into a tensor
Load reference C6 coefficients from file.

Parameters
----------
dtype : torch.dtype, optional
Floating point precision for tensor. Defaults to `torch.double`.
device : Optional[torch.device], optional
Device of tensor. Defaults to None.

Returns
-------
Tensor
Reference C6 coefficients.
"""

# pylint: disable=import-outside-toplevel
import math

import numpy as np

path = op.join(op.dirname(__file__), "reference-c6.npy")
ref = torch.from_numpy(np.load(path)).type(dtype).to(device)

n_element = (math.isqrt(8 * ref.shape[0] + 1) - 1) // 2 + 1
n_reference = ref.shape[-1]
c6 = torch.zeros(
(n_element, n_element, n_reference, n_reference),
dtype=ref.dtype,
device=ref.device,
)

for i in range(1, n_element):
for j in range(1, n_element):
ij = i * (i - 1) // 2 + j - 1 if j < i else j * (j - 1) // 2 + i - 1
c6[i, j, :, :] = ref[ij, :, :].T if j < i else ref[ij, :, :]

return c6
path = op.join(op.dirname(__file__), "reference-c6.pt")
return torch.load(path).type(dtype).to(device)


class Reference:
Expand Down
4 changes: 2 additions & 2 deletions src/tad_dftd3/utils/misc.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
import torch

from .._typing import List, Optional, Size, Tensor, TensorOrTensors, Union
from ..constants import PSE
from ..constants import PSE_S2Z

__all__ = [
"real_atoms",
Expand Down Expand Up @@ -174,7 +174,7 @@ def to_number(symbols: List[str]) -> Tensor:
Obtain atomic numbers from element symbols.
"""
return torch.flatten(
torch.tensor([PSE.get(symbol.capitalize(), 0) for symbol in symbols])
torch.tensor([PSE_S2Z.get(symbol.capitalize(), 0) for symbol in symbols])
)


Expand Down
22 changes: 22 additions & 0 deletions tests/test_dftd3.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,28 @@
from .samples import samples


def test_fail() -> None:
positions = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]])

# TPSS0-D3BJ-ATM parameters
param = {
"s6": torch.tensor(1.0000),
"s8": torch.tensor(1.2576),
"s9": torch.tensor(1.0000),
"alp": torch.tensor(14.00),
"a1": torch.tensor(0.3768),
"a2": torch.tensor(4.5865),
}

# unsupported element
with pytest.raises(ValueError):
dftd3(torch.tensor([1, 105]), positions, param)

# wrong numbers
with pytest.raises(ValueError):
dftd3(torch.tensor([1]), positions, param)


@pytest.mark.parametrize("dtype", [torch.float32, torch.float64])
@pytest.mark.parametrize("name", ["LiH", "SiH4", "PbH4-BiH3"])
def test_single(dtype: torch.dtype, name: str) -> None:
Expand Down
7 changes: 5 additions & 2 deletions tests/test_disp.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,8 +54,11 @@ def test_fail() -> None:

# wrong numbers
with pytest.raises(ValueError):
numbers = torch.tensor([1])
disp.dispersion(numbers, positions, param, c6)
disp.dispersion(torch.tensor([1]), positions, param, c6)

# unsupported element
with pytest.raises(ValueError):
disp.dispersion(torch.tensor([1, 105]), positions, param, c6)


@pytest.mark.parametrize("dtype", [torch.float, torch.double])
Expand Down
27 changes: 27 additions & 0 deletions tests/test_model/test_load.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# This file is part of tad-dftd3.
# SPDX-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Test loading C6 coefficients.
"""
import torch

from tad_dftd3 import constants, reference


def test_ref() -> None:
c6 = reference._load_c6(dtype=torch.double)
assert c6.shape == torch.Size(
(constants.MAX_ELEMENT, constants.MAX_ELEMENT, 7, 7),
)