Skip to content

dsinghnegi/atari_RL_agent

Repository files navigation

Atari RL agent

Reinforcement learning based agents to playing Atari games.

Agents

  • Deep Q-network(DQN)

    • Double DQN
    • Prioritized Replay
    • Dueiling network
  • Asynchronous Advantage Actor-Critic(A3C)

    • Multiprocess support
    • Multiprocess Cuda support
    • LSTM based model
    • Generalized Advantage Estimate (GAE)
    • Frame stacking based model

Game Play

DQN

Pong BreakoutDeterministic

A3C

KungFuMaster Boxing SpaceInvaders

Supported Environment

  • BreakoutDeterministic-v4
  • PongDeterministic-v4
  • KungFuMasterDeterministic-v4
  • BoxingDeterministic-v4
  • SapecInvadersDeterministic-v4

TODO

  • DQN
  • TensorBoard support
  • Double DQN
  • Prioritized replay
  • Dueling network
  • Train model for Pong
  • Achive 300+ score on breakout
  • A3C Agent for KungFuMasterDeterministic-v4
  • A3C Agent for BoxingDeterministic-v4
  • Parallel processing for A3C
  • LSTM layer for A3C to replace frame stacking

License

The Apache-2.0 License. Please see the license file for more information.

References