Skip to content

Commit

Permalink
Merge pull request #424 from elfi-dev/dev
Browse files Browse the repository at this point in the history
Release v0.8.4
  • Loading branch information
hpesonen authored Jun 13, 2022
2 parents b4663c8 + 6b1b17a commit 47cd2ae
Show file tree
Hide file tree
Showing 27 changed files with 596 additions and 244 deletions.
23 changes: 23 additions & 0 deletions CHANGELOG.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,29 @@
Changelog
=========

0.8.4 (2021-06-13)
------------------
- Modify Lotka-Volterra model's priors as many methods do not support discrete random variables.
- Fix acquisition index in state plot
- Reformat `summary()` for `Sample(ParameterInferenceResult)`
- Fix linting in `arch.py`
- Add summary statistics to Lotka-Volterra model
- Add boolean `observation_noise` option to `lotka_volterra`
- Add parameter names as an optional input in model prior and fix the parameter order in priors used in BOLFI and BOLFIRE
- Add feature names as an optional input and make training data size a required input in BOLFIRE
- Fix the observed property in simulator nodes
- Fix default outputs in generate
- Add docstring description to ARCH-model
- Make MAP estimates calculation in BOLFIRE optional and based on log-posterior
- Use batch system to run simulations in BOLFIRE
- Use `target_model.parameter_names` from instead of `model.parameter_names` in `BOLFIRE`
- Extract BO results using `target_model.parameter_names` from instead of `model.parameter_names`
- Update tox.ini
- Add option to use additive acquisition cost in LCBSC
- Change sigma_proposals-input in metropolis from list to dict
- Fix is_array in utils
- Fix acq_noise_var-bug in acquisition.py. Influenced BOLFI.

0.8.3 (2021-02-17)
------------------
- Add a new inference method: BOLFIRE
Expand Down
2 changes: 2 additions & 0 deletions MANIFEST.in
Original file line number Diff line number Diff line change
@@ -1 +1,3 @@
recursive-include elfi/examples/cpp *.txt *.cpp Makefile
include docs/description.rst
include requirements.txt
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
**Version 0.8.3 released!** See the [CHANGELOG](CHANGELOG.rst) and [notebooks](https://github.com/elfi-dev/notebooks).
**Version 0.8.4 released!** See the [CHANGELOG](CHANGELOG.rst) and [notebooks](https://github.com/elfi-dev/notebooks).

<img src="https://raw.githubusercontent.com/elfi-dev/elfi/dev/docs/logos/elfi_logo_text_nobg.png" width="200" />

Expand Down
2 changes: 1 addition & 1 deletion docs/usage/BOLFI.rst
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ surface is updated after each batch (especially so if the noise is 0!).
.. code:: ipython3
bolfi = elfi.BOLFI(log_d, batch_size=1, initial_evidence=20, update_interval=10,
bounds={'t1':(-2, 2), 't2':(-1, 1)}, acq_noise_var=[0.1, 0.1], seed=seed)
bounds={'t1':(-2, 2), 't2':(-1, 1)}, acq_noise_var=0.1, seed=seed)
Sometimes you may have some samples readily available. You could then
initialize the GP model with a dictionary of previous results by giving
Expand Down
2 changes: 1 addition & 1 deletion elfi/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,4 +31,4 @@
__email__ = 'elfi-support@hiit.fi'

# make sure __version_ is on the last non-empty line (read by setup.py)
__version__ = '0.8.3'
__version__ = '0.8.4'
17 changes: 16 additions & 1 deletion elfi/examples/arch.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,21 @@ def get_model(n_obs=100, true_params=None, seed_obs=None, n_lags=5):


def arch(t1, t2, n_obs=100, batch_size=1, random_state=None):
"""Generate a sequence of samples from the ARCH(1) model.
r"""Generate a sequence of samples from the ARCH(1) regression model.
Autoregressive conditional heteroskedasticity (ARCH) sequence describes the variance
of the error term as a function of previous error terms.
x_i = t_1 x_{i-1} + \epsilon_i
\epsilon_i = w_i \sqrt{0.2 + t_2 \epsilon_{i-1}^2}
where w_i is white noise ~ N(0,1) independent of \epsilon_0 ~ N(0,1)
References
----------
Engle, R.F. (1982). Autoregressive Conditional Heteroscedasticity with
Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4): 987-1007
Parameters
----------
Expand All @@ -87,6 +101,7 @@ def arch(t1, t2, n_obs=100, batch_size=1, random_state=None):
e = E(t2, n_obs, batch_size, random_state)
for i in range(1, n_obs + 1):
y[:, i] = t1 * y[:, i - 1] + e[:, i]

return y[:, 1:]


Expand Down
136 changes: 104 additions & 32 deletions elfi/examples/lotka_volterra.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,8 +74,10 @@ def lotka_volterra(r1, r2, r3, prey_init=50, predator_init=100, sigma=0., n_obs=

n_full = 20000
stock = np.empty((batch_size, n_full, 2), dtype=np.int32)
stock[:, 0, 0] = prey_init
stock[:, 0, 1] = predator_init
# As we use approximate continuous priors for prey_init and
# predator_init, we'll round them down to closest integers
stock[:, 0, 0] = np.floor(prey_init)
stock[:, 0, 1] = np.floor(predator_init)
stoichiometry = np.array([[1, 0], [-1, 1], [0, -1], [0, 0]], dtype=np.int32)
times = np.empty((batch_size, n_full))
times[:, 0] = 0
Expand Down Expand Up @@ -141,9 +143,11 @@ def lotka_volterra(r1, r2, r3, prey_init=50, predator_init=100, sigma=0., n_obs=
return stock_out


def get_model(n_obs=50, true_params=None, seed_obs=None, **kwargs):
def get_model(n_obs=50, true_params=None, observation_noise=False, seed_obs=None, **kwargs):
"""Return a complete Lotka-Volterra model in inference task.
Including observation noise to system is optional.
Parameters
----------
n_obs : int, optional
Expand All @@ -152,6 +156,8 @@ def get_model(n_obs=50, true_params=None, seed_obs=None, **kwargs):
Parameters with which the observed data is generated.
seed_obs : int, optional
Seed for the observed data generation.
observation_noise : bool, optional
Whether or not add normal noise to observations.
Returns
-------
Expand All @@ -160,34 +166,117 @@ def get_model(n_obs=50, true_params=None, seed_obs=None, **kwargs):
"""
logger = logging.getLogger()
if true_params is None:
true_params = [1.0, 0.005, 0.6, 50, 100, 10.]
if observation_noise:
true_params = [1.0, 0.005, 0.6, 50, 100, 10.]
else:
true_params = [1.0, 0.005, 0.6, 50, 100, 0.]
else:
if observation_noise:
if len(true_params) != 6:
raise ValueError(
"Option observation_noise = True."
" Provide six input parameters."
)
else:
if len(true_params) != 5:
raise ValueError(
"Option observation_noise = False."
" Provide five input parameters."
)
true_params = true_params + [0]

kwargs['n_obs'] = n_obs
y_obs = lotka_volterra(*true_params, random_state=np.random.RandomState(seed_obs), **kwargs)

m = elfi.ElfiModel()
sim_fn = partial(lotka_volterra, **kwargs)
priors = []
sumstats = []
priors = [
elfi.Prior(ExpUniform, -6., 2., model=m, name='r1'),
elfi.Prior(ExpUniform, -6., 2., model=m, name='r2'), # easily kills populations
elfi.Prior(ExpUniform, -6., 2., model=m, name='r3'),
elfi.Prior('normal', 50, np.sqrt(50), model=m, name='prey0'),
elfi.Prior('normal', 100, np.sqrt(100), model=m, name='predator0')
]

priors.append(elfi.Prior(ExpUniform, -6., 2., model=m, name='r1'))
priors.append(elfi.Prior(ExpUniform, -6., 2., model=m, name='r2')) # easily kills populations
priors.append(elfi.Prior(ExpUniform, -6., 2., model=m, name='r3'))
priors.append(elfi.Prior('poisson', 50, model=m, name='prey0'))
priors.append(elfi.Prior('poisson', 100, model=m, name='predator0'))
priors.append(elfi.Prior(ExpUniform, np.log(0.5), np.log(50), model=m, name='sigma'))
if observation_noise:
priors.append(elfi.Prior(ExpUniform, np.log(0.5), np.log(50), model=m, name='sigma'))

elfi.Simulator(sim_fn, *priors, observed=y_obs, name='LV')
sumstats.append(elfi.Summary(partial(pick_stock, species=0), m['LV'], name='prey'))
sumstats.append(elfi.Summary(partial(pick_stock, species=1), m['LV'], name='predator'))
elfi.Distance('sqeuclidean', *sumstats, name='d')

sumstats = [
elfi.Summary(partial(stock_mean, species=0), m['LV'], name='prey_mean'),
elfi.Summary(partial(stock_mean, species=1), m['LV'], name='pred_mean'),
elfi.Summary(partial(stock_log_variance, species=0), m['LV'], name='prey_log_var'),
elfi.Summary(partial(stock_log_variance, species=1), m['LV'], name='pred_log_var'),
elfi.Summary(partial(stock_autocorr, species=0, lag=1), m['LV'], name='prey_autocorr_1'),
elfi.Summary(partial(stock_autocorr, species=1, lag=1), m['LV'], name='pred_autocorr_1'),
elfi.Summary(partial(stock_autocorr, species=0, lag=2), m['LV'], name='prey_autocorr_2'),
elfi.Summary(partial(stock_autocorr, species=1, lag=2), m['LV'], name='pred_autocorr_2'),
elfi.Summary(stock_crosscorr, m['LV'], name='crosscorr')
]

elfi.Distance('euclidean', *sumstats, name='d')

logger.info("Generated %i observations with true parameters r1: %.1f, r2: %.3f, r3: %.1f, "
"prey0: %i, predator0: %i, sigma: %.1f.", n_obs, *true_params)

return m


def stock_mean(stock, species=0, mu=0, std=1):
"""Calculate the mean of the trajectory by species."""
stock = np.atleast_2d(stock[:, :, species])
mu_x = np.mean(stock, axis=1)

return (mu_x - mu) / std


def stock_log_variance(stock, species=0, mu=0, std=1):
"""Calculate the log variance of the trajectory by species."""
stock = np.atleast_2d(stock[:, :, species])
var_x = np.var(stock, axis=1, ddof=1)
log_x = np.log(var_x + 1)

return (log_x - mu) / std


def stock_autocorr(stock, species=0, lag=1, mu=0, std=1):
"""Calculate the autocorrelation of lag n of the trajectory by species."""
stock = np.atleast_2d(stock[:, :, species])
n_obs = stock.shape[1]

mu_x = np.mean(stock, axis=1, keepdims=True)
std_x = np.std(stock, axis=1, ddof=1, keepdims=True)
sx = ((stock - np.repeat(mu_x, n_obs, axis=1)) / np.repeat(std_x, n_obs, axis=1))
sx_t = sx[:, lag:]
sx_s = sx[:, :-lag]

C = np.sum(sx_t * sx_s, axis=1) / (n_obs - 1)

return (C - mu) / std


def stock_crosscorr(stock, mu=0, std=1):
"""Calculate the cross correlation of the species trajectories."""
n_obs = stock.shape[1]

x_preys = stock[:, :, 0] # preys
x_preds = stock[:, :, 1] # predators

mu_preys = np.mean(x_preys, axis=1, keepdims=True)
mu_preds = np.mean(x_preds, axis=1, keepdims=True)
std_preys = np.std(x_preys, axis=1, keepdims=True)
std_preds = np.std(x_preds, axis=1, keepdims=True)
s_preys = ((x_preys - np.repeat(mu_preys, n_obs, axis=1))
/ np.repeat(std_preys, n_obs, axis=1))
s_preds = ((x_preds - np.repeat(mu_preds, n_obs, axis=1))
/ np.repeat(std_preds, n_obs, axis=1))

C = np.sum(s_preys * s_preds, axis=1) / (n_obs - 1)

return (C - mu) / std


class ExpUniform(elfi.Distribution):
r"""Prior distribution for parameter.
Expand Down Expand Up @@ -235,20 +324,3 @@ def pdf(cls, x, a, b):
p = np.where((x < np.exp(a)) | (x > np.exp(b)), 0, np.reciprocal(x))
p /= (b - a) # normalize
return p


def pick_stock(stock, species):
"""Return the stock for single species.
Parameters
----------
stock : np.array
species : int
0 for prey, 1 for predator.
Returns
-------
np.array
"""
return stock[:, :, species]
3 changes: 3 additions & 0 deletions elfi/executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,6 +107,9 @@ def get_execution_order(cls, G):
# Filter those output nodes who have an operation to run
needed = tuple(sorted(node for node in output_nodes if 'operation' in G.nodes[node]))

if len(needed) == 0:
return []

if needed not in cache:
# Resolve the nodes that need to be executed in the graph
nodes_to_execute = set(needed)
Expand Down
Loading

0 comments on commit 47cd2ae

Please sign in to comment.