A simple and experimental project for a bunch of machine learning codes and utils
Data will downloaded programatically when using download() function of loaders. It will prompt to the user the username and key of kaggle.json.
Install Docker
- run build.bat (Works with sh too)
- run run.bat (Works with sh too)
Install python, pip and run
python -m venv venv
- Activate venv enviroment, example:
.\venv\Scripts\Activate.ps1
- run
pip install -r requirements.txt
- run
python call_test.py
- or run
python call_test_gui.py
if you want a gui
You can install as a package (it doesn't include test/ folder) using pip:
pip install git@https://github.com/erickfmm/ML-experiments.git
Then just import the module you want, for example (see test files):
import mlexperiments.unsupervised.clustering.cluster_sklearn as clustering_sk
labels1 = [int(i/1000) for i in range(4000)]
np.random.seed(844)
clust1 = np.random.normal(5, 2, (1000, 2))
clust2 = np.random.normal(15, 3, (1000, 2))
clust3 = np.random.multivariate_normal([17, 3], [[1, 0], [0, 1]], 1000)
clust4 = np.random.multivariate_normal([2, 16], [[1, 0], [0, 1]], 1000)
simple_dataset = np.concatenate((clust1, clust2, clust3, clust4))
assignments = clustering_sk.dbscan(dataset1)
- More loaders
- Documentation (pydoc or similar)
- Documentation - UML
- Better menu (call_test), maybe using some ncurses or similar
- Documentation inside test/ files
- More tests (more ML models and experiments)
By now I only have 2 interfaces. The main and one experiment:
Main interface: