- GDCM > 2
- Please refer to GDCM installation guide
- You can also install GDCM v3 using package manager (
libgdcm-dev
in Ubuntu 22)- If you get spurious warnings in CMake, and they annoy you, consider installing (Ubuntu 22):
libgdcm-tools libvtkgdcm-cil libvtkgdcm-dev libvtkgdcm-java python3-vtkgdcm
- If you get spurious warnings in CMake, and they annoy you, consider installing (Ubuntu 22):
- CUDA
- The code has been tested with
- GDCM v2 and CUDA v10.2 on Ubuntu 20.04
- GDCM v3 and CUDA v11.8 on Ubuntu 22.04
- GDCM v3 and CUDA v8.0 on Ubuntu 22.04
- GDCM v3 and CUDA v12.6 on Alma Linux 9
- ZLIB
- Python3 (for phantom example)
$ git clone https://github.com/ferdymercury/moquimc.git
$ cd moquimc
$ mkdir build
$ cd build
$ cmake ..
$ make
- You can specify a custom CUDA path in the cmake command, for example:
-DCUDAToolkit_ROOT=/opt/cuda-8.0 -DCMAKE_CUDA_COMPILER=/opt/cuda-8.0/bin/nvcc
. The default is the nvcc found within thhe PATH environment variable. - You can specify a custom CUDA compute capability via
-DCMAKE_CUDA_ARCHITECTURES=20
. The default is to use CUDA compute capability 7.5
$ python3 ../tests/mc/phantom/create_phantom.py # create water phantom in /tmp/, you need to install numpy
$ ./tests/mc/phantom/phantom_env --lxyz 100 100 350 --pxyz 0.0 0.0 -175 --nxyz 200 200 350 --spot_energy 200.0 0.0 --spot_position 0 0 0.5 --spot_size 30.0 30.0 --histories 100000 --phantom_path /tmp/water_phantom.raw --output_prefix ./ --gpu_id 0 > ./log.out
Or simply:
$ ctest -V -R phantom_env
- There have been large updates in moqui and we added new features
- Statistical uncertainty based stopping criteria (Please refer to the example input parameter Statistical stopping criteria)
- Robust options (setup errors and density scaling, Please refer to the example input parameter Robust options)
- Aperture handling
- Support multiple calibration curves (You can override machine selection and define multiple calibration curves for a machine)
- Unit weights per spot for Dij calculation (This only works for Dij scorer. The UnitWeight will be the absolute number of particles simulated)
- moqui uses fitted functions for calibration curves
- You need to obtain stopping power ratio to water and radiation length per density and define compute_rsp_ and compute_rl_ functions in patient_material_t
- To obtain the curves:
- Obtain material information using TOPAS
- Calculate correction factors for desired SPR curve
- Calculate fitting curves and implement them in moqui
- You can refer to the fit_rsp.py for the curve fitting
- You can find the TOPAS extensions and example parameter file under treatment_machines/TOPAS
- These are updated version of the HU extension in TOPAS (https://github.com/topasmc/extensions/tree/master/HU)
Hoyeon Lee (leehoy12345@gmail.com) Jungwook Shin Joost M. Verburg Mislav Bobić Brian Winey Jan Schuemann Harald Paganetti
You might need for old Tesla C2070 commands such as:
- Install patched nvidia-390 driver on Ubuntu 22: https://launchpad.net/%7Edtl131/+archive/ubuntu/nvidiaexp
- Install gcc5 and cuda8: https://askubuntu.com/questions/1442001/cuda-8-and-gcc-5-on-ubuntu-22-04-for-tesla-c2070
- Error with stncpy: https://stackoverflow.com/questions/76531467/nvcc-cuda8-gcc-5-3-no-longer-compiles-with-o1-on-ubuntu-22-04
- Error with float128: https://askubuntu.com/questions/1442001/cuda-8-and-gcc-5-on-ubuntu-22-04-for-tesla-c2070
cmake ../ -DCUDAToolkit_ROOT=/opt/cuda-8.0 -DCMAKE_CUDA_COMPILER=/opt/cuda-8.0/bin/nvcc -DCMAKE_C_COMPILER=/opt/gcc5/gcc -DCMAKE_CXX_COMPILER=/opt/gcc5/g++ -DCMAKE_CUDA_ARCHITECTURES=20
- This might also be needed depending on the platform or CMake version:
export PATH=/opt/gcc5:$PATH
- Need to fine-tune QtCreator adding a new custom compiler /opt/cuda-8.0/bin/nvcc and edit .config/clangd/config.yaml file with
CompileFlags:
Add:
[
'--cuda-path="/opt/cuda-8.0/"',
--cuda-gpu-arch=sm_20,
'-L"/opt/cuda-8.0/lib64/"',
-lcudart,
]
- See clangd/clangd#858 and clangd/clangd#1815
For an Ampere GPU NVIDIA A40:
cmake -DCUDAToolkit_ROOT=/usr/local/cuda-12.6 -DCMAKE_CUDA_ARCHITECTURES=86 -DCMAKE_CUDA_COMPILER=/usr/local/cuda-12.6/bin/nvcc
This work is supported by NIH/NCI R01 234210 "Fast Individualized Delivery Adaptation in Proton Therapy"