-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Tom Bendall <thomas.bendall@metoffice.gov.uk>
- Loading branch information
1 parent
a1d5959
commit 0db493e
Showing
5 changed files
with
424 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
import numpy as np | ||
from firedrake import (Interpolator, Function, dx, pi, SpatialCoordinate, | ||
split, conditional, ge, sin, dot, ln, cos, inner, Projector) | ||
from firedrake.fml import subject | ||
from gusto.core.coord_transforms import lonlatr_from_xyz | ||
from gusto.recovery import Recoverer, BoundaryMethod | ||
from gusto.physics.physics_parametrisation import PhysicsParametrisation | ||
from gusto.core.labels import prognostic | ||
from gusto.equations import thermodynamics | ||
from gusto.core.configuration import HeldSuarezParameters | ||
from gusto.core import logger | ||
|
||
|
||
class Relaxation(PhysicsParametrisation): | ||
""" | ||
Relaxation term for Held Suarez | ||
""" | ||
|
||
def __init__(self, equation, variable_name, parameters, hs_parameters=None): | ||
""" | ||
Args: | ||
equation (:class:`PrognosticEquationSet`): the model's equation. | ||
variable_name (str): the name of the variable | ||
hs_parameters (:class'Configuration'): contains the parameters for the Held-suariez test case | ||
""" | ||
label_name = f'relaxation_{variable_name}' | ||
if hs_parameters is None: | ||
hs_parameters = HeldSuarezParameters() | ||
logger.warning('Using default Held-Suarez parameters') | ||
super().__init__(equation, label_name, hs_parameters) | ||
|
||
if equation.domain.on_sphere: | ||
x, y, z = SpatialCoordinate(equation.domain.mesh) | ||
_, lat, _ = lonlatr_from_xyz(x, y, z) | ||
else: | ||
# TODO: this could be determined some other way | ||
# Take a mid-latitude | ||
lat = pi / 4 | ||
|
||
self.X = Function(equation.X.function_space()) | ||
X = self.X | ||
self.domain = equation.domain | ||
theta_idx = equation.field_names.index('theta') | ||
self.theta = X.subfunctions[theta_idx] | ||
Vt = equation.domain.spaces('theta') | ||
rho_idx = equation.field_names.index('rho') | ||
rho = split(X)[rho_idx] | ||
|
||
boundary_method = BoundaryMethod.extruded if equation.domain.vertical_degree == 0 else None | ||
self.rho_averaged = Function(Vt) | ||
self.rho_recoverer = Recoverer(rho, self.rho_averaged, boundary_method=boundary_method) | ||
self.exner = Function(Vt) | ||
self.exner_interpolator = Interpolator( | ||
thermodynamics.exner_pressure(equation.parameters, | ||
self.rho_averaged, self.theta), self.exner) | ||
self.sigma = Function(Vt) | ||
kappa = equation.parameters.kappa | ||
|
||
T0surf = hs_parameters.T0surf | ||
T0horiz = hs_parameters.T0horiz | ||
T0vert = hs_parameters.T0vert | ||
T0stra = hs_parameters.T0stra | ||
|
||
sigma_b = hs_parameters.sigmab | ||
tau_d = hs_parameters.tau_d | ||
tau_u = hs_parameters.tau_u | ||
|
||
theta_condition = (T0surf - T0horiz * sin(lat)**2 - (T0vert * ln(self.exner) * cos(lat)**2)/kappa) | ||
Theta_eq = conditional(T0stra/self.exner >= theta_condition, T0stra/self.exner, theta_condition) | ||
|
||
# timescale of temperature forcing | ||
tau_cond = (self.sigma**(1/kappa) - sigma_b) / (1 - sigma_b) | ||
newton_freq = 1 / tau_d + (1/tau_u - 1/tau_d) * conditional(0 >= tau_cond, 0, tau_cond) * cos(lat)**4 | ||
forcing_expr = newton_freq * (self.theta - Theta_eq) | ||
|
||
# Create source for forcing | ||
self.source_relaxation = Function(Vt) | ||
self.source_interpolator = Interpolator(forcing_expr, self.source_relaxation) | ||
|
||
# Add relaxation term to residual | ||
test = equation.tests[theta_idx] | ||
dx_reduced = dx(degree=equation.domain.max_quad_degree) | ||
forcing_form = test * self.source_relaxation * dx_reduced | ||
equation.residual += self.label(subject(prognostic(forcing_form, 'theta'), X), self.evaluate) | ||
|
||
def evaluate(self, x_in, dt): | ||
""" | ||
Evalutes the source term generated by the physics. | ||
Args: | ||
x_in: (:class:`Function`): the (mixed) field to be evolved. | ||
dt: (:class:`Constant`): the timestep, which can be the time | ||
interval for the scheme. | ||
""" | ||
self.X.assign(x_in) | ||
self.rho_recoverer.project() | ||
self.exner_interpolator.interpolate() | ||
|
||
# Determine sigma:= exner / exner_surf | ||
exner_columnwise, index_data = self.domain.coords.get_column_data(self.exner, self.domain) | ||
sigma_columnwise = np.zeros_like(exner_columnwise) | ||
for col in range(len(exner_columnwise[:, 0])): | ||
sigma_columnwise[col, :] = exner_columnwise[col, :] / exner_columnwise[col, 0] | ||
self.domain.coords.set_field_from_column_data(self.sigma, sigma_columnwise, index_data) | ||
|
||
self.source_interpolator.interpolate() | ||
|
||
|
||
class RayleighFriction(PhysicsParametrisation): | ||
""" | ||
Forcing term on the velocity of the form | ||
F_u = -u / a, | ||
where a is some friction factor | ||
""" | ||
def __init__(self, equation, hs_parameters=None): | ||
""" | ||
Args: | ||
equation (:class:`PrognosticEquationSet`): the model's equation. | ||
hs_parameters (:class'Configuration'): contains the parameters for the Held-suariez test case | ||
""" | ||
label_name = 'rayleigh_friction' | ||
if hs_parameters is None: | ||
hs_parameters = HeldSuarezParameters() | ||
logger.warning('Using default Held-Suarez parameters') | ||
super().__init__(equation, label_name, hs_parameters) | ||
|
||
self.domain = equation.domain | ||
self.X = Function(equation.X.function_space()) | ||
X = self.X | ||
k = equation.domain.k | ||
u_idx = equation.field_names.index('u') | ||
u = split(X)[u_idx] | ||
theta_idx = equation.field_names.index('theta') | ||
self.theta = X.subfunctions[theta_idx] | ||
rho_idx = equation.field_names.index('rho') | ||
rho = split(X)[rho_idx] | ||
Vt = equation.domain.spaces('theta') | ||
Vu = equation.domain.spaces('HDiv') | ||
u_hori = u - k*dot(u, k) | ||
|
||
boundary_method = BoundaryMethod.extruded if self.domain == 0 else None | ||
self.rho_averaged = Function(Vt) | ||
self.exner = Function(Vt) | ||
self.rho_recoverer = Recoverer(rho, self.rho_averaged, boundary_method=boundary_method) | ||
self.exner_interpolator = Interpolator( | ||
thermodynamics.exner_pressure(equation.parameters, | ||
self.rho_averaged, self.theta), self.exner) | ||
|
||
self.sigma = Function(Vt) | ||
sigmab = hs_parameters.sigmab | ||
kappa = equation.parameters.kappa | ||
tau_fric = 24 * 60 * 60 | ||
|
||
tau_cond = (self.sigma**(1/kappa) - sigmab) / (1 - sigmab) | ||
wind_timescale = conditional(ge(0, tau_cond), 0, tau_cond) / tau_fric | ||
forcing_expr = u_hori * wind_timescale | ||
|
||
self.source_friction = Function(Vu) | ||
self.source_projector = Projector(forcing_expr, self.source_friction) | ||
|
||
tests = equation.tests | ||
test = tests[u_idx] | ||
dx_reduced = dx(degree=equation.domain.max_quad_degree) | ||
source_form = inner(test, self.source_friction) * dx_reduced | ||
equation.residual += self.label(subject(prognostic(source_form, 'u'), X), self.evaluate) | ||
|
||
def evaluate(self, x_in, dt): | ||
""" | ||
Evaluates the source term generated by the physics. This does nothing if | ||
the implicit formulation is not used. | ||
Args: | ||
x_in: (:class: 'Function'): the (mixed) field to be evolved. | ||
dt: (:class: 'Constant'): the timestep, which can be the time | ||
interval for the scheme. | ||
""" | ||
self.X.assign(x_in) | ||
self.rho_recoverer.project() | ||
self.exner_interpolator.interpolate() | ||
# Determine sigma:= exner / exner_surf | ||
exner_columnwise, index_data = self.domain.coords.get_column_data(self.exner, self.domain) | ||
sigma_columnwise = np.zeros_like(exner_columnwise) | ||
for col in range(len(exner_columnwise[:, 0])): | ||
sigma_columnwise[col, :] = exner_columnwise[col, :] / exner_columnwise[col, 0] | ||
self.domain.coords.set_field_from_column_data(self.sigma, sigma_columnwise, index_data) | ||
|
||
self.source_projector.project() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
""" | ||
This tests the Rayleigh friction term used in the Held Suarez test case. | ||
""" | ||
|
||
from gusto import * | ||
import gusto.equations.thermodynamics as td | ||
from gusto.core.labels import physics_label | ||
from firedrake import (Constant, PeriodicIntervalMesh, as_vector, norm, | ||
ExtrudedMesh, Function, dot) | ||
from firedrake.fml import identity, drop | ||
|
||
|
||
def run_apply_rayleigh_friction(dirname): | ||
# ------------------------------------------------------------------------ # | ||
# Set up model objects | ||
# ------------------------------------------------------------------------ # | ||
|
||
dt = 3600.0 | ||
|
||
# declare grid shape, with length L and height H | ||
L = 500. | ||
H = 500. | ||
nlayers = int(H / 5.) | ||
ncolumns = int(L / 5.) | ||
|
||
# make mesh and domain | ||
m = PeriodicIntervalMesh(ncolumns, L) | ||
mesh = ExtrudedMesh(m, layers=nlayers, layer_height=(H / nlayers)) | ||
domain = Domain(mesh, dt, "CG", 0) | ||
|
||
# Set up equation | ||
parameters = CompressibleParameters() | ||
eqn = CompressibleEulerEquations(domain, parameters) | ||
|
||
# I/O | ||
output = OutputParameters(dirname=dirname+"/held_suarez_friction", | ||
dumpfreq=1, | ||
dumplist=['u']) | ||
io = IO(domain, output) | ||
|
||
# Physics scheme | ||
physics_parametrisation = RayleighFriction(eqn) | ||
|
||
time_discretisation = BackwardEuler(domain) | ||
|
||
# time_discretisation = ForwardEuler(domain) | ||
physics_schemes = [(physics_parametrisation, time_discretisation)] | ||
|
||
# Only want time derivatives and physics terms in equation, so drop the rest | ||
eqn.residual = eqn.residual.label_map(lambda t: any(t.has_label(time_derivative, physics_label)), | ||
map_if_true=identity, map_if_false=drop) | ||
|
||
# Time stepper | ||
scheme = ForwardEuler(domain) | ||
stepper = SplitPhysicsTimestepper(eqn, scheme, io, | ||
physics_schemes=physics_schemes) | ||
|
||
# ------------------------------------------------------------------------ # | ||
# Initial conditions | ||
# ------------------------------------------------------------------------ # | ||
|
||
Vu = domain.spaces("HDiv") | ||
Vt = domain.spaces("theta") | ||
Vr = domain.spaces("DG") | ||
|
||
# Declare prognostic fields | ||
u0 = stepper.fields("u") | ||
rho0 = stepper.fields("rho") | ||
theta0 = stepper.fields("theta") | ||
|
||
# Set a background state with constant pressure and temperature | ||
pressure = Function(Vr).interpolate(Constant(100000.)) | ||
temperature = Function(Vt).interpolate(Constant(295.)) | ||
theta_d = td.theta(parameters, temperature, pressure) | ||
|
||
theta0.project(theta_d) | ||
rho0.interpolate(pressure / (temperature*parameters.R_d)) | ||
|
||
# Constant horizontal wind | ||
u0.project(as_vector([864, 0.0])) | ||
|
||
# Answer: slower winds than initially | ||
u_true = Function(Vu) | ||
u_true.project(as_vector([828, 0.0])) | ||
|
||
# ------------------------------------------------------------------------ # | ||
# Run | ||
# ------------------------------------------------------------------------ # | ||
|
||
stepper.run(t=0, tmax=dt) | ||
|
||
return mesh, stepper, u_true | ||
|
||
|
||
def test_rayleigh_friction(tmpdir): | ||
|
||
dirname = str(tmpdir) | ||
mesh, stepper, u_true = run_apply_rayleigh_friction(dirname) | ||
|
||
u_final = stepper.fields('u') | ||
|
||
# Project into CG1 to get sensible values | ||
e_x = as_vector([1.0, 0.0]) | ||
e_z = as_vector([0.0, 1.0]) | ||
|
||
DG0 = FunctionSpace(mesh, "DG", 0) | ||
u_x_final = Function(DG0).project(dot(u_final, e_x)) | ||
u_x_true = Function(DG0).project(dot(u_true, e_x)) | ||
u_z_final = Function(DG0).project(dot(u_final, e_z)) | ||
u_z_true = Function(DG0).project(dot(u_true, e_z)) | ||
|
||
denom = norm(u_x_true) | ||
assert norm(u_x_final - u_x_true) / denom < 0.0001, 'Final horizontal wind is incorrect' | ||
assert norm(u_z_final - u_z_true) < 1e-12, 'Final vertical wind is incorrect' |
Oops, something went wrong.