Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Mean mixing ratio augmentation #608

Draft
wants to merge 8 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 50 additions & 1 deletion gusto/core/kernels.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
"""

from firedrake import dx
from firedrake.parloops import par_loop, READ, WRITE, MIN, MAX, op2
from firedrake.parloops import par_loop, READ, WRITE, INC, MIN, MAX, op2
import numpy as np


Expand Down Expand Up @@ -113,8 +113,57 @@
{"field": (field, WRITE),
"field_in": (field_in, READ)})

class MeanMixingRatioWeights():

Check failure on line 116 in gusto/core/kernels.py

View workflow job for this annotation

GitHub Actions / Run linter

E302

gusto/core/kernels.py:116:1: E302 expected 2 blank lines, found 1
"""
Finds the lambda values for blending a mixing ratio and its
mean DG0 field in the MeanMixingRatioLimiter.

First, each cell is looped over and the minimum value is computed
"""

def __init__(self, V):
"""
Args:
V (:class:`FunctionSpace`): The space of the field to be clipped.
"""
# Using DG1-equispaced, with 4 DOFs per cell
shapes = {'nDOFs': V.finat_element.space_dimension(),
'nDOFs_base': int(V.finat_element.space_dimension() / 4)}
domain = "{{[i]: 0 <= i < {nDOFs_base}}}".format(**shapes)

instrs = ("""
<float64> min_value1 = 0.0
<float64> min_value2 = 0.0
<float64> min_value = 0.0
<float64> new_lamda = 0.0
for i
min_value1 = fmin(mX_field[i*4], mX_field[i*4+1])
min_value2 = fmin(mX_field[i*4+2], mX_field[i*4+3])
min_value = fmin(min_value1, min_value2)
if min_value < 0.0
lamda[i] = fmax(lamda[i],-min_value/(mean_field[i] - min_value))
end
end
""")
#lamda[i] = fmax(lamda[i],-min_value/(mean_field[i] - min_value))

Check failure on line 148 in gusto/core/kernels.py

View workflow job for this annotation

GitHub Actions / Run linter

E265

gusto/core/kernels.py:148:9: E265 block comment should start with '# '
self._kernel = (domain, instrs)

def apply(self, lamda, mX_field, mean_field):
"""
Performs the par loop.

Args:
w (:class:`Function`): the field in which to store the weights. This
lives in the continuous target space.
"""
par_loop(self._kernel, dx,
{"lamda": (lamda, INC),
"mX_field": (mX_field, READ),
"mean_field": (mean_field, READ)})



class MinKernel():

Check failure on line 166 in gusto/core/kernels.py

View workflow job for this annotation

GitHub Actions / Run linter

E303

gusto/core/kernels.py:166:1: E303 too many blank lines (3)
"""Finds the minimum DoF value of a field."""

def __init__(self):
Expand Down
305 changes: 301 additions & 4 deletions gusto/spatial_methods/augmentation.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,16 +9,22 @@
LinearVariationalProblem, LinearVariationalSolver, lhs, rhs, dot,
ds_b, ds_v, ds_t, ds, FacetNormal, TestFunction, TrialFunction,
transpose, nabla_grad, outer, dS, dS_h, dS_v, sign, jump, div,
Constant, sqrt, cross, curl, FunctionSpace, assemble, DirichletBC
Constant, sqrt, cross, curl, FunctionSpace, assemble, DirichletBC,
Projector
)
from firedrake.fml import (

Check failure on line 15 in gusto/spatial_methods/augmentation.py

View workflow job for this annotation

GitHub Actions / Run linter

F401

gusto/spatial_methods/augmentation.py:15:1: F401 'firedrake.fml.keep' imported but unused

Check failure on line 15 in gusto/spatial_methods/augmentation.py

View workflow job for this annotation

GitHub Actions / Run linter

F401

gusto/spatial_methods/augmentation.py:15:1: F401 'firedrake.fml.replace_trial_function' imported but unused
subject, all_terms, replace_subject, keep, replace_test_function,
replace_trial_function, drop
)
from firedrake.fml import subject
from gusto import (

Check failure on line 19 in gusto/spatial_methods/augmentation.py

View workflow job for this annotation

GitHub Actions / Run linter

F401

gusto/spatial_methods/augmentation.py:19:1: F401 'gusto.mass_weighted' imported but unused
time_derivative, transport, transporting_velocity, TransportEquationType,
logger
logger, prognostic, mass_weighted
)

from gusto.spatial_methods.limiters import MeanLimiter, MixedFSLimiter

Check failure on line 23 in gusto/spatial_methods/augmentation.py

View workflow job for this annotation

GitHub Actions / Run linter

F401

gusto/spatial_methods/augmentation.py:23:1: F401 'gusto.spatial_methods.limiters.MixedFSLimiter' imported but unused
import copy
import numpy as np

class Augmentation(object, metaclass=ABCMeta):

Check failure on line 27 in gusto/spatial_methods/augmentation.py

View workflow job for this annotation

GitHub Actions / Run linter

E302

gusto/spatial_methods/augmentation.py:27:1: E302 expected 2 blank lines, found 1
"""
Augments an equation with another equation to be solved simultaneously.
"""
Expand Down Expand Up @@ -49,6 +55,13 @@

pass

def limit(self, x_in_mixed):
"""
Apply any special limiting as part of the augmentation
"""

pass


class VorticityTransport(Augmentation):
"""
Expand All @@ -73,6 +86,8 @@
self, domain, eqns, transpose_commutator=True, supg=False
):

self.name = 'vorticity'

V_vel = domain.spaces('HDiv')
V_vort = domain.spaces('H1')

Expand Down Expand Up @@ -236,3 +251,285 @@
logger.debug('Vorticity solve')
self.solver.solve()
self.x_in.subfunctions[1].assign(self.Z_in)


class MeanMixingRatio(Augmentation):
"""
This augments a transport problem involving a mixing ratio to
include a mean mixing ratio field. This enables posivity to be

Check failure on line 259 in gusto/spatial_methods/augmentation.py

View workflow job for this annotation

GitHub Actions / Run linter

W291

gusto/spatial_methods/augmentation.py:259:67: W291 trailing whitespace
ensured during conservative transport.

Args:
domain (:class:`Domain`): The domain object.
eqns (:class:`PrognosticEquationSet`): The overarching equation set.
mX_names (:class: list): A list of mixing ratios that

Check failure on line 265 in gusto/spatial_methods/augmentation.py

View workflow job for this annotation

GitHub Actions / Run linter

W291

gusto/spatial_methods/augmentation.py:265:62: W291 trailing whitespace
require augmented mean mixing ratio fields.
"""

def __init__(
self, domain, eqns, mX_names
):

self.name = 'mean_mixing_ratio'
self.mX_names = mX_names
self.mX_num = len(mX_names)

# Store information about original equation set
self.eqn_orig = eqns
self.domain = domain
exist_spaces = eqns.spaces
self.idx_orig = len(exist_spaces)

# Define the mean mixing ratio on the DG0 space
DG0 = FunctionSpace(domain.mesh, "DG", 0)

# Set up fields and names for each mixing ratio
self.mean_names = []
self.mean_idxs = []
self.mX_idxs = []
mX_spaces = []
mean_spaces = []
self.limiters = []
#self.sublimiters = {}

for i in range(self.mX_num):
mX_name = mX_names[i]
print(mX_names)
print(mX_name)
self.mean_names.append('mean_'+mX_name)
mean_spaces.append(DG0)
exist_spaces.append(DG0)
self.mean_idxs.append(self.idx_orig + i)

# Extract the mixing ratio in question:
mX_idx = eqns.field_names.index(mX_name)
mX_spaces.append(eqns.spaces[mX_idx])
self.mX_idxs.append(mX_idx)

# Define a limiter
#self.limiters.append(MeanLimiter(eqns.spaces[mX_idx]))
#self.sublimiters.update({mX_name: MeanLimiter(eqns.spaces[mX_idx])})

#self.limiter = MixedFSLimiter(self.eqn_orig, self.sublimiters)
#self.limiter = MixedFSLimiter(sublimiters)
self.limiters = MeanLimiter(mX_spaces)

# Contruct projectors for computing the mean mixing ratios
self.mX_ins = [Function(mX_spaces[i]) for i in range(self.mX_num)]
self.mean_outs = [Function(mean_spaces[i]) for i in range(self.mX_num)]
self.compute_means = [Projector(self.mX_ins[i], self.mean_outs[i]) \
for i in range(self.mX_num)]

# Create the new mixed function space:
self.fs = MixedFunctionSpace(exist_spaces)
self.X = Function(self.fs)
self.tests = TestFunctions(self.fs)

self.bcs = None

self.x_in = Function(self.fs)
self.x_out = Function(self.fs)


def setup_residual(self, spatial_methods, equation):
# Copy spatial method for the mixing ratio onto the
# mean mixing ratio.

orig_residual = equation.residual

# Copy the mean mixing ratio residual terms:
for i in range(self.mX_num):
if i == 0:
mean_residual = orig_residual.label_map(
lambda t: t.get(prognostic) == self.mX_names[i],
map_if_false=drop
)
mean_residual = prognostic.update_value(mean_residual, self.mean_names[i])
else:
mean_residual_term = orig_residual.label_map(
lambda t: t.get(prognostic) == self.mX_names[i],
map_if_false=drop
)
mean_residual_term = prognostic.update_value(mean_residual_term,\
self.mean_names[i])
mean_residual = mean_residual + mean_residual_term

print('\n in setup_transport')

# Replace the tests and trial functions for all terms
# of the fields in the original equation
for idx in range(self.idx_orig):
field = self.eqn_orig.field_names[idx]
# Seperate logic if mass-weighted or not?
#print('\n', idx)
#print(field)

#prog = split(self.X)[idx]

#print('\n residual term before change')
#print(old_residual.label_map(
# lambda t: t.get(prognostic) == field,
# map_if_false=drop
#).form)

orig_residual = orig_residual.label_map(
lambda t: t.get(prognostic) == field,
map_if_true=replace_subject(self.X, old_idx=idx, new_idx = idx)
)
orig_residual = orig_residual.label_map(
lambda t: t.get(prognostic) == field,
map_if_true=replace_test_function(self.tests, old_idx=idx, new_idx=idx)
)
#print('\n residual term after change')
#print(old_residual.label_map(
# lambda t: t.get(prognostic) == field,
# map_if_false=drop
#).form)

#print('\n now setting up mean mixing ratio residual terms')


#print('\n mean mX residual after change')
#print(mean_residual.form)

# Update the subject and test functions for the
# mean mixing ratios
for i in range(self.mX_num):
mean_residual = mean_residual.label_map(
all_terms,
replace_subject(self.X, old_idx=self.mX_idxs[i], new_idx=self.mean_idxs[i])
)
mean_residual = mean_residual.label_map(
all_terms,
replace_test_function(self.tests, old_idx=self.mX_idxs[i], new_idx=self.mean_idxs[i])
)


#print('\n mean mX residual after change')
#print(mean_residual.form)

# Form the new residual
residual = orig_residual + mean_residual
self.residual = subject(residual, self.X)

#Check these two forms
#print('\n Original equation with residual of length, ', len(equation.residual))
#print('\n Augmented equation with residual of length, ', len(self.residual))





def setup_transport_old(self, spatial_methods):
mX_spatial_method = next(method for method in spatial_methods if method.variable == self.mX_name)

mean_spatial_method = copy.copy(mX_spatial_method)
mean_spatial_method.variable = self.mean_name
self.spatial_methods = copy.copy(spatial_methods)
self.spatial_methods.append(mean_spatial_method)
for method in self.spatial_methods:
print(method.variable)
method.equation.residual = self.residual
print(method.form.form)
print(len(method.equation.residual))

# Alternatively, redo all the spatial methods
# using the new mixed function space.
# So, want to make a new list of spatial methods
new_spatial_methods = []
for method in self.spatial_methods:
# Determine the tye of transport method:
new_method = DGUpwind(self, method.variable)
new_spatial_methods.append(new_method)

def pre_apply(self, x_in):
"""
Sets the original fields, i.e. not the mean mixing ratios

Args:
x_in (:class:`Function`): The input fields
"""

#for idx, field in enumerate(self.eqn.field_names):
# self.x_in.subfunctions[idx].assign(x_in.subfunctions[idx])
print('in pre-apply')
for idx in range(self.idx_orig):
print(np.min(x_in.subfunctions[idx].dat.data))
print('\n')
self.x_in.subfunctions[idx].assign(x_in.subfunctions[idx])

# Set the mean mixing ratio to be zero, just because
#DG0 = FunctionSpace(self.domain.mesh, "DG", 0)
#mean_mX = Function(DG0, name=self.mean_name)

#self.x_in.subfunctions[self.mean_idx].assign(mean_mX)


def post_apply(self, x_out):
"""
Apply the limiters.
Sets the output fields, i.e. not the mean mixing ratios

Args:
x_out (:class:`Function`): The output fields
"""
print('in post apply')
for idx in range(self.idx_orig):
print(np.min(self.x_out.subfunctions[idx].dat.data))
print('\n')
x_out.subfunctions[idx].assign(self.x_out.subfunctions[idx])

def update(self, x_in_mixed):
"""
Compute the mean mixing ratio field by projecting the mixing
ratio from DG1 into DG0.

To DO: Shouldn't this be a conservative projection??!!
This requires density fields...

Args:
x_in_mixed (:class:`Function`): The mixed function to update.
"""
print('in update')
for i in range(self.mX_num):
self.mX_ins[i].assign(x_in_mixed.subfunctions[self.mX_idxs[i]])
print('\n min of mX field:')
print(np.min(self.mX_ins[i].dat.data))
self.compute_means[i].project()
self.x_in.subfunctions[self.mean_idxs[i]].assign(self.mean_outs[i])

def limit(self, x_in_mixed):
# Ensure non-negativity by applying the blended limiter
mX_pre = []
means = []
print('limiting within the augmentation')
for i in range(self.mX_num):
mX_pre.append(x_in_mixed.subfunctions[self.mX_idxs[i]])
means.append(x_in_mixed.subfunctions[self.mean_idxs[i]])

print('\n min of mX field:')
print(np.min(mX_pre[i].dat.data))
print('\n min of mean field:')
print(np.min(means[i].dat.data))

self.limiters.apply(mX_pre, means)

print('\n After applying blended limiter')

for i in range(self.mX_num):
x_in_mixed.subfunctions[self.mX_idxs[i]].assign(mX_pre[i])
print('\n min of mX field:')
print(np.min(mX_pre[i].dat.data))
print('\n min of mean field:')
print(np.min(means[i].dat.data))

def limit_old(self, x_in_mixed):
# Ensure non-negativity by applying the blended limiter
for i in range(self.mX_num):
print('limiting within the augmentation')
mX_field = x_in_mixed.subfunctions[self.mX_idxs[i]]
mean_field = x_in_mixed.subfunctions[self.mean_idxs[i]]
print(np.min(x_in_mixed.subfunctions[self.mX_idxs[i]].dat.data))
self.limiters[i].apply(mX_field, mean_field)
print(np.min(x_in_mixed.subfunctions[self.mX_idxs[i]].dat.data))
#x_in_mixed.subfunctions[self.mX_idxs[i]].assign(mX_field)
Loading
Loading