Skip to content

Cross platform parser for the Gherkin language. Used by Cucumber to parse .feature files.

License

Notifications You must be signed in to change notification settings

fobuss/gherkin

 
 

Repository files navigation

Gherkin 3

Join the chat at https://gitter.im/cucumber/gherkin Build Status

Gherkin is a parser and compiler for the Gherkin language.

It is intended to replace Gherkin 2 and be used by all Cucumber implementations to parse .feature files.

If you want a reference implementation of Cucumber, take a look at microcuke.

Gherkin 3 is currently implemented for the following platforms:

See CONTRIBUTING.md if you want to contribute a parser for a new language. Our wish-list is (in no particular order):

  • C
  • Perl
  • PHP
  • Rust
  • Elixir

Example

// Java
Parser<Feature> parser = new Parser<>(new AstBuilder());
Feature feature = parser.parse("Feature: ...");
List<Pickle> pickles = new Compiler().compile(feature, "path/to/the.feature")
// C#
var parser = new Parser();
var feature = parser.Parse("Feature: ...");
# Ruby
require 'gherkin/parser'
require 'gherkin/pickles/compiler'
parser = Gherkin::Parser.new
feature = parser.parse("Feature: ...")
pickles = Gherkin::Pickles::Compiler.new.compile(feature, "path/to/the.feature")
// JavaScript
var Gherkin = require('gherkin');
var parser = new Gherkin.Parser();
var feature = parser.parse("Feature: ...");
var pickles = new Gherkin.Compiler().compile(feature, "path/to/the.feature");
// Go
import (
  "strings"
  "github.com/cucumber/gherkin-go"
)
reader := strings.NewReader(`Feature: ...`)
feature, err := gherkin.ParseFeature(reader)

Download the package via: go get github.com/cucumber/gherkin-go

# Python
from gherkin.parser import Parser
from gherkin.pickles.compiler import compile

parser = Parser()
feature = parser.parse("Feature: ...")
pickles = compile(feature, "path/to/the.feature")

Table cell escaping

If you want to use a newline character in a table cell, you can write this as \n. If you need a '|' as part of the cell, you can escape it as \|. And finally, if you need a '', you can escape that with \\.

Why Gherkin 3?

I wrote up a summary here.

Architecture

The following diagram outlines the architecture:

╔════════════╗   ┌───────┐   ╔══════╗   ┌──────┐   ╔═══╗
║Feature file║──>│Scanner│──>║Tokens║──>│Parser│──>║AST║
╚════════════╝   └───────┘   ╚══════╝   └──────┘   ╚═══╝

The scanner reads a gherkin doc (typically read from a .feature file) and creates a token for each line. The tokens are passed to the parser, which outputs an AST (Abstract Syntax Tree).

If the scanner sees a # language header, it will reconfigure itself dynamically to look for Gherkin keywords for the associated language. The keywords are defined in gherkin-languages.json.

The scanner is hand-written, but the parser is generated by the Berp parser generator as part of the build process.

Berp takes a grammar file (gherkin.berp) and a template file (gherkin-X.razor) as input and outputs a parser in language X:

╔════════════╗   ┌────────┐   ╔═══════════════╗
║gherkin.berp║──>│berp.exe│<──║gherkin-X.razor║
╚════════════╝   └────────┘   ╚═══════════════╝
                      │
                      V
                 ╔════════╗
                 ║Parser.x║
                 ╚════════╝

Also see the wiki for some early design docs (which might be a little outdated, but mostly OK).

AST

The AST produced by the parser can be described with the following class diagram:

Every class represents a node in the AST. Every node has a Location that describes the line number and column number in the input file. These numbers are 1-indexed.

All fields on nodes are strings (except for Location.line and Location.column).

The implementation is simple objects without behaviour, only data. It's up to the implementation to decide whether to use classes or just basic collections, but the AST must have a JSON representation (this is used for testing).

Each node in the JSON representation also has a type property with the name of the node type.

You can see some examples in the testdata/good directory.

Compiler

The compiler compiles the AST produced by the parser into a simpler form - Pickles.

╔═══╗   ┌────────┐   ╔═══════╗
║AST║──>│Compiler│──>║Pickles║
╚═══╝   └────────┘   ╚═══════╝

The rationale is to decouple Gherkin from Cucumber so that Cucumber is open to support alternative formats to Gherkin (for example Markdown).

The simpler Pickles data structure also simplifies the internals of Cucumber. With the compilation logic maintained in the Gherkin library we can easily use the same test suite for all implementations to verify that compilation is behaving consistently between implementations.

Each Scenario will be compiled into a Pickle. A Pickle has a list of PickleStep, derived from steps in a Scenario.

Each Examples row under Scenario Outline will also be compiled into a Pickle.

Any Background steps will also be compiled into each Pickle.

Tags are compiled into the Pickle as well (inheriting tags from parent elements in the Gherkin AST).

Example:

@a
Feature:
  @b @c
  Scenario Outline:
    Given <x>

    Examples:
      | x |
      | y |

  @d @e
  Scenario Outline:
    Given <m>

    @f
    Examples:
      | m |
      | n |

This will be compiled into several Pickle objects (here represented as JSON):

[
  {
    "locations": [
      {
        "column": 7,
        "line": 9,
        "path": "../testdata/good/scenario_outlines_with_tags.feature"
      },
      {
        "column": 3,
        "line": 4,
        "path": "../testdata/good/scenario_outlines_with_tags.feature"
      }
    ],
    "name": "Scenario: ",
    "steps": [
      {
        "arguments": [],
        "locations": [
          {
            "column": 7,
            "line": 9,
            "path": "../testdata/good/scenario_outlines_with_tags.feature"
          },
          {
            "column": 11,
            "line": 5,
            "path": "../testdata/good/scenario_outlines_with_tags.feature"
          }
        ],
        "text": "y"
      }
    ],
    "tags": [
      {
        "location": {
          "column": 1,
          "line": 1,
          "path": "../testdata/good/scenario_outlines_with_tags.feature"
        },
        "name": "@a"
      },
      {
        "location": {
          "column": 3,
          "line": 3,
          "path": "../testdata/good/scenario_outlines_with_tags.feature"
        },
        "name": "@b"
      },
      {
        "location": {
          "column": 6,
          "line": 3,
          "path": "../testdata/good/scenario_outlines_with_tags.feature"
        },
        "name": "@c"
      }
    ]
  },
  {
    "locations": [
      {
        "column": 7,
        "line": 18,
        "path": "../testdata/good/scenario_outlines_with_tags.feature"
      },
      {
        "column": 3,
        "line": 12,
        "path": "../testdata/good/scenario_outlines_with_tags.feature"
      }
    ],
    "name": "Scenario: ",
    "steps": [
      {
        "arguments": [],
        "locations": [
          {
            "column": 7,
            "line": 18,
            "path": "../testdata/good/scenario_outlines_with_tags.feature"
          },
          {
            "column": 11,
            "line": 13,
            "path": "../testdata/good/scenario_outlines_with_tags.feature"
          }
        ],
        "text": "n"
      }
    ],
    "tags": [
      {
        "location": {
          "column": 1,
          "line": 1,
          "path": "../testdata/good/scenario_outlines_with_tags.feature"
        },
        "name": "@a"
      },
      {
        "location": {
          "column": 3,
          "line": 11,
          "path": "../testdata/good/scenario_outlines_with_tags.feature"
        },
        "name": "@d"
      },
      {
        "location": {
          "column": 6,
          "line": 11,
          "path": "../testdata/good/scenario_outlines_with_tags.feature"
        },
        "name": "@e"
      },
      {
        "location": {
          "column": 5,
          "line": 15,
          "path": "../testdata/good/scenario_outlines_with_tags.feature"
        },
        "name": "@f"
      }
    ]
  }
]

Each Pickle keeps a pointer back to the original source. This is useful for generating reports and stack traces when a Scenario fails.

Cucumber will further transform this list of Pickle structs to a list of TestCase objects. TestCase objects link user code such as Hooks and Step Definitions.

Building Gherkin 3

See CONTRIBUTING.md

About

Cross platform parser for the Gherkin language. Used by Cucumber to parse .feature files.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • JavaScript 19.7%
  • Objective-C 17.6%
  • C# 15.9%
  • Go 13.4%
  • Java 13.0%
  • Python 9.5%
  • Other 10.9%