Anthony Baptista, Galadriel Brière, Anaïs Baudot
Run MultiXrank using the following command line:
python ~/ApplicationsMultiXrank/Leukemia/run_mxr.py
Visualize top 20 proritized genes and drugs in Cytoscape with file: Leukemia/multiXrank_results/top20_cyto.cys
Learn more about Hetionet:
- Systematic integration of biomedical knowledge prioritizes drugs for repurposing
Daniel S Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen, Dexter Hadley, Ari Green, Pouya Khankhanian, Sergio E Baranzini
eLife. 2017. DOI: 10.7554/eLife.26726
Run MultiXrank using the following commands:
python ~/ApplicationsMultiXrank/Hetionet/HetionetDB_to_MultiXrankDB/hetionet_to_multixrank.py
Epilepsy
python ~/ApplicationsMultiXrank/Hetionet/Epilepsy/run_mxr.py
Nicotine Dependence
python ~/ApplicationsMultiXrank/Hetionet/NicotineDependence/run_mxr.py
Epilepsy
python ~/ApplicationsMultiXrank/Hetionet/Epilepsy/downstream_analysis/give_name.py
python ~/ApplicationsMultiXrank/Hetionet/Epilepsy/downstream_analysis/check_results.py
python ~/ApplicationsMultiXrank/Hetionet/Epilepsy/downstream_analysis/code_pie_tot.py
Nicotine Dependence
python ~/ApplicationsMultiXrank/Hetionet/NicotineDependence/downstream_analysis/give_name.py
1914 positive G-D associations (from DisGeNET, v2.0, 2014) and 3828 negative G-D associations sampled randomly
python ~/ApplicationsMultiXrank/GeneDiseaseAssociations/1_gene_disease_multiplexes/training_set.py
python ~/ApplicationsMultiXrank/GeneDiseaseAssociations/1_gene_disease_multiplexes/generate_rwr.py
python ~/ApplicationsMultiXrank/GeneDiseaseAssociations/1_gene_disease_multiplexes/make_sparse_matrices.py
python ~/ApplicationsMultiXrank/GeneDiseaseAssociations/1_gene_disease_multiplexes/train_models.py
python ~/ApplicationsMultiXrank/GeneDiseaseAssociations/1_gene_disease_multiplexes/test_2020associations/compare_2014_2020_associations.py
7218 positive G-D associations (from DisGeNET, v7.0, 2020) and 7218 negative G-D associations sampled randomly
python ~/ApplicationsMultiXrank/GeneDiseaseAssociations/1_gene_disease_multiplexes/test_2020associations/make_test_set.py
python ~/ApplicationsMultiXrank/GeneDiseaseAssociations/1_gene_disease_multiplexes/test_2020associations/generate_rwr.py
python ~/ApplicationsMultiXrank/GeneDiseaseAssociations/1_gene_disease_multiplexes/test_2020associations/make_sparse_matrices.py
python ~/ApplicationsMultiXrank/GeneDiseaseAssociations/1_gene_disease_multiplexes/test_2020associations/predict_2020associations.py
You can also run the pipeline for a 3 layer network containing a drug interaction layer by repeating the same steps in GeneDiseaseAssociations/2_gene_disease_drug_multiplexes.
python ~/ApplicationsMultiXrank/Comorbidity/immune_diseases_set.py
Going from the list of immune diseases contained in autoimmune_disease.txt
, keep as seeds autoimmune diseases that appear in the disease layer diseases_monoplex_no_self_loop.tsv
. Note that MultiXrank do not consider seeds that only present self-loops in the multiplex network. Hence, we only consider immune diseases that are connected to other diseases in the disease layer.
2 - Run MultiXrank for each immune disease taken as seed and each of the hematopoietic cell-specific network
python ~/ApplicationsMultiXrank/Comorbidity/run_MXR.py
python ~/ApplicationsMultiXrank/Comorbidity/tree_lineage_analysis.py
python ~/ApplicationsMultiXrank/Comorbidity/diseases_analysis.py