Advanced Image Processing Lecture based on Deep Learning in 한국과학기술원 반도체설계교육센터 (KAIST IDEC)
Pneumonia Classification and Pet Data Image Segmentation with U-Net
In 2021 Advanced Image Processing Lecture with KAIST IDEC
-
Pet Data - 1190 Images (Ragdoll, saint_bernard, scottish_terrier, Siamese, staffordshire_bull_terrier, yorkshire_terrier)
[University of OXFORD : Open Dataset]
(https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz) (https://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz) -
Pneumonia Data - 1200 Images (Normal, Pneumonia)
[Identifying Medical Diagnoses and Treatable Diseases by Image-Based : Open Dataset] (http://download.tensorflow.org/data/ChestXRay2017/train/images.tfrec) (http://download.tensorflow.org/data/ChestXRay2017/train/paths.tfrec)
Model | Loss Function | Optimizer | Epoch | Total Loss | Accuracy (Classification) (=F1-Score) |
Dataset | Result |
---|---|---|---|---|---|---|---|
U-Net | Sparse Categorical Crossentropy | RMSProp | 200 | 0.0269 (Train) |
. | Pet Data | Result_01 (Segmentation) |
U-Net | Sparse Categorical Crossentropy | RMSProp | 1000 | 0.0041 (Train) |
. | Pet Data | Result_02 (Segmentation) |
U-Net Leaky ReLU |
Sparse Categorical Crossentropy | RMSProp | 1000 | 0.0048 (Train) |
. | Pet Data | Result_03 (Segmentation) |
FCN | Binary Crossentropy | Adam | 200 | 1.0335 (Test) |
0.8650 (Test) |
Pneumonia Data | Result_04 (Classification) |
FCN | MSE | Adam | 200 | 0.1464 (Test) |
0.8500 (Test) |
Pneumonia Data | Result_05 (Classification) |
FCN | Binary Crossentropy | Nadam | 200 | 1.6821 (Test) |
0.7500 (Test) |
Pneumonia Data | Result_06 (Classification) |
FCN | Binary Crossentropy | AdaDelta | 200 | 0.3628 (Test) |
0.8600 (Test) |
Pneumonia Data | Result_06 (Classification) |
Siamese_203
yorkshire_terrier_67