Skip to content

📈 Estimate effects, contrasts and means based on statistical models

License

Notifications You must be signed in to change notification settings

guhjy/estimate

 
 

Repository files navigation

estimate

CRAN downloads Build Status codecov

estimate is a lightweight package helping with model-based estimations, used in the computation of marginal means, contrast analysis and predictions.

Installation

Run the following:

install.packages("devtools")
devtools::install_github("easystats/estimate")
library("estimate")

Documentation

Documentation Blog Features

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

Features

The package is built around 5 main functions:

These functions are powered by the data_grid() function, a smart tool for guessing the appropriate reference grid.

The package currently only supports rstanarm models, but will be expanded to cover a large variety of frequentist and Bayesian models.

Examples

Estimate marginal means

library(rstanarm)

model <- stan_glm(Sepal.Width ~ Species, data = iris)

estimate_means(model)
## Species    | Median |       89% CI
## ----------------------------------
## setosa     |   3.43 | [3.35, 3.50]
## versicolor |   2.77 | [2.69, 2.85]
## virginica  |   2.98 | [2.90, 3.05]

Contrast analysis

estimate_contrasts(model)
## Level1     |     Level2 | Median |         89% CI |     pd | % in ROPE | Median (std.)
## --------------------------------------------------------------------------------------
## setosa     | versicolor |   0.65 |   [0.55, 0.76] |   100% |        0% |          1.50
## setosa     |  virginica |   0.45 |   [0.34, 0.56] |   100% |        0% |          1.03
## versicolor |  virginica |  -0.20 | [-0.31, -0.09] | 99.85% |     6.10% |         -0.47
library(see)

plot(estimate_contrasts(model), estimate_means(model))

Check the contrasts at different points of another linear predictor

model <- stan_glm(Sepal.Width ~ Species * Petal.Length, data = iris)

estimate_contrasts(model, modulate = "Petal.Length", length = 3)
## Level1     |     Level2 | Petal.Length | Median |        89% CI |     pd | % in ROPE | Median (std.)
## ----------------------------------------------------------------------------------------------------
## setosa     | versicolor |         1.00 |   1.53 |  [1.06, 2.02] |   100% |        0% |          3.52
## setosa     |  virginica |         1.00 |   1.22 |  [0.69, 1.78] | 99.98% |     0.02% |          2.81
## versicolor |  virginica |         1.00 |  -0.31 | [-0.98, 0.45] | 74.72% |    13.35% |         -0.71
## setosa     | versicolor |         3.95 |   1.78 |  [1.03, 2.57] |   100% |        0% |          4.07
## setosa     |  virginica |         3.95 |   1.81 |  [1.04, 2.66] |   100% |     0.02% |          4.14
## versicolor |  virginica |         3.95 |   0.03 | [-0.18, 0.25] | 59.85% |    52.33% |          0.07
## setosa     | versicolor |         6.90 |   2.00 |  [0.53, 3.83] | 97.42% |     1.03% |          4.58
## setosa     |  virginica |         6.90 |   2.40 |  [0.92, 4.17] | 99.00% |     0.78% |          5.50
## versicolor |  virginica |         6.90 |   0.38 | [-0.08, 0.78] | 91.67% |    10.82% |          0.87

Find a predictor’s slopes at each factor level

estimate_slopes(model)
## Species    | Median |       89% CI |     pd | % in ROPE | Median (std.)
## -----------------------------------------------------------------------
## setosa     |   0.41 | [0.13, 0.73] | 98.32% |     4.70% |          1.66
## versicolor |   0.33 | [0.19, 0.48] | 99.98% |     0.75% |          1.33
## virginica  |   0.21 | [0.09, 0.33] | 99.80% |     6.78% |          0.86

Generate predictions from your model to compare it with original data

estimate_response(model)
Species Petal.Length Median CI_low CI_high
setosa 1.4 3.40 2.91 3.92
setosa 1.4 3.40 2.83 3.87
setosa 1.3 3.36 2.84 3.83
setosa 1.5 3.44 2.92 3.94
setosa 1.4 3.40 2.88 3.91
setosa 1.7 3.53 3.03 4.07

Estimate the link between the response and a predictor

model <- stan_glm(Sepal.Width ~ poly(Petal.Length, 2), data=iris)

estimate_link(model)
Petal.Length Median CI_low CI_high
1.00 3.62 3.52 3.73
1.98 3.18 3.11 3.24
2.97 2.90 2.83 2.97
3.95 2.78 2.71 2.86
4.93 2.83 2.78 2.89
5.92 3.05 2.96 3.14
6.90 3.44 3.25 3.63

Describe the smooth term by its linear parts

estimate_smooth(model)
## Part | Start |  End |   Size | Trend | Linearity
## ------------------------------------------------
## 1    |  1.00 | 4.11 | 53.50% | -0.01 |      0.94
## 2    |  4.11 | 6.90 | 47.00% |  0.01 |      0.94

About

📈 Estimate effects, contrasts and means based on statistical models

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 98.8%
  • CSS 1.2%