Open-source code for paper - H. Yang, S. Firodiya, N.J. Bryan, M. Kim, "Don't Separate, Learn to Remix: End-to-End Neural Remixing with Joint Optimization." ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022
- Paper: https://arxiv.org/abs/2107.13634
- Webpage: https://minjekim.com/research-projects/neural-remixer/
- Python 3.6.0
- torch 1.8.0
- torchaudio 0.8.0
- Download MUSDB18 from - https://sigsep.github.io/datasets/musdb.html#musdb18-compressed-stems
- Download Slakh from - http://www.slakh.com/
Asteroid - https://github.com/asteroid-team/asteroid
asteroid/models/conv-tasnet.py
- Prepare MUSDB for training or validation -
python mus_process.py
Set Dataset to "train" or "test" per needed. - Prepare MUSDB for evaluation -
python mus_eval_process.py
- Prepare Slakh for training or validation -
python slakh_process.py
Set Dataset to "train" or "test" per needed. - Prepare Slakh for evaluation -
python slakh_eval_process.py
Symbol | Description |
---|---|
n_src | Number of sources contained in the mixture |
weight_src | source separation loss scale |
weight_mix | remix loss scale |
transfer_model | The model label to start transferring training from |
trainset | dataset. MUSDB or Slakh |
train_loss | SDR or SDSDR |
with_silent | Whether or not using the data, has actually contains less number of sources than the number the model is designed on |
baseline | Whether or not training baseline |
ratio_on_rep | Whether or not having ratios applying on the representation feature space |
Scenario 1: we are training the following models, on MUSDB with 4 sources, and we want the ratio of loss weights to be 1:4.
- Model 1 -
python train_model.py --n_src 4 --weight_src 1 --weight_mix 4 --trainset MUSDB
- Model 2 -
python train_model.py --n_src 4 --weight_src 1 --weight_mix 4 --trainset MUSDB --ratio_on_rep
- Baseline -
python train_model.py --n_src 4 --weight_src 1 --weight_mix 4 --trainset MUSDB --baseline
To get the remix output of specific one track
python3 eval_on_samples.py --model_name 0826_123024 --n_src 4 --dataset MUSDB --loss_f SDSDR