Skip to content

Commit

Permalink
Merge pull request #7 from hotosm/enhance/vectorizer
Browse files Browse the repository at this point in the history
Enhance : Vectorizer
  • Loading branch information
kshitijrajsharma authored Mar 25, 2024
2 parents e044f67 + ba31441 commit 36495b3
Show file tree
Hide file tree
Showing 6 changed files with 77 additions and 56 deletions.
27 changes: 27 additions & 0 deletions .github/workflows/unit-test.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
name: Run Tests

on:
push:
branches: [master]
pull_request:
branches: [master]

jobs:
test:
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.8

- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install tensorflow==2.12.0 efficientnet==1.1.1
pip install -e .
- name: Run tests
run: python -m unittest discover -s tests -p 'test_*.py'
3 changes: 1 addition & 2 deletions API/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,15 +184,14 @@ async def predict_api(request: PredictionRequest):
- Predicted results.
"""
try:
predictions = predict(
predictions = await predict(
bbox=request.bbox,
model_path=request.checkpoint,
zoom_level=request.zoom_level,
tms_url=request.source,
tile_size=256,
confidence=request.confidence,
tile_overlap_distance=request.tile_overlap_distance,
merge_adjancent_polygons=request.merge_adjacent_polygons,
max_angle_change=request.max_angle_change,
skew_tolerance=request.skew_tolerance,
tolerance=request.tolerance,
Expand Down
3 changes: 0 additions & 3 deletions predictor/app.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@ def predict(
area_threshold=3,
tolerance=0.5,
tile_overlap_distance=0.15,
merge_adjancent_polygons=True,
use_raster2polygon=False,
remove_metadata=True,
use_josm_q=False,
Expand All @@ -43,7 +42,6 @@ def predict(
area_threshold (float, optional): Threshold for filtering polygon areas. Defaults to 3 sqm.
tolerance (float, optional): Tolerance parameter for simplifying polygons. Defaults to 0.5 m. Percentage Tolerance = (Tolerance in Meters / Arc Length in Meters ​)×100
tile_overlap_distance : Provides tile overlap distance to remove the strip between predictions, Defaults to 0.15m
merge_adjancent_polygons(bool,optional) : Merges adjacent self intersecting or containing each other polygons
"""
if base_path:
base_path = os.path.join(base_path, "prediction", str(uuid.uuid4()))
Expand Down Expand Up @@ -93,7 +91,6 @@ def predict(
output_path=geojson_path,
area_threshold=area_threshold,
tolerance=tolerance,
merge_adjancent_polygons=merge_adjancent_polygons,
)
print(f"It took {round(time.time()-start)} sec to extract polygons")
with open(geojson_path, "r") as f:
Expand Down
44 changes: 6 additions & 38 deletions predictor/vectorizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,6 @@ def vectorize(
output_path: str = None,
tolerance: float = 0.5,
area_threshold: float = 5,
merge_adjancent_polygons=True,
) -> None:
"""Polygonize raster tiles from the input path.
Expand All @@ -35,7 +34,6 @@ def vectorize(
output_path: Path of the output file.
tolerance (float, optional): Tolerance parameter for simplifying polygons. Defaults to 0.5 m. Percentage Tolerance = (Tolerance in Meters / Arc Length in Meters ​)×100
area_threshold (float, optional): Threshold for filtering polygon areas. Defaults to 5 sqm.
merge_adjancent_polygons(bool,optional) : Merges adjacent self intersecting or containing each other polygons
Example::
Expand Down Expand Up @@ -64,45 +62,15 @@ def vectorize(
raster.close()

polygons = [shape(s) for s, _ in shapes(mosaic, transform=output)]
merged_polygons = polygons
if merge_adjancent_polygons:
# Merge adjacent polygons
merged_polygons = []
gs = gpd.GeoSeries(polygons, crs=kwargs["crs"])

for polygon in polygons:
if not merged_polygons:
merged_polygons.append(polygon)
else:
merged = False
for i, merged_polygon in enumerate(merged_polygons):
if (
polygon.intersects(merged_polygon)
or polygon.contains(merged_polygon)
or merged_polygon.contains(polygon)
):
merged_polygons[i] = merged_polygon.union(polygon)
merged = True
break
if not merged:
merged_polygons.append(polygon)
# Explode MultiPolygons
gs = gs.explode()

# areas = [poly.area for poly in merged_polygons]
# max_area, median_area = np.max(areas), np.median(areas)
polygons_filtered = []
for multi_polygon in merged_polygons:
if multi_polygon.is_empty:
continue
# Filter by area threshold
gs = gs[gs.area >= area_threshold]

# If it's a MultiPolygon, iterate through individual polygons
if multi_polygon.geom_type == "MultiPolygon":
for polygon in multi_polygon.geoms:
if polygon.area > area_threshold:
polygons_filtered.append(Polygon(polygon.exterior))
# If it's a single Polygon, directly append it
elif multi_polygon.area > area_threshold:
polygons_filtered.append(Polygon(multi_polygon.exterior))

gs = gpd.GeoSeries(polygons_filtered, crs=kwargs["crs"]).simplify(tolerance)
gs = gs.simplify(tolerance)
if gs.empty:
raise ValueError("No Features Found")
gs.to_crs("EPSG:4326").to_file(output_path)
Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

setup(
name="fairpredictor",
version="0.0.30",
version="0.0.31",
url="https://github.com/kshitijrajsharma/fairpredictor",
author="Kshitij Raj Sharma",
author_email="skshitizraj@gmail.com",
Expand Down
54 changes: 42 additions & 12 deletions tests/test_predict.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,42 @@
bbox = [-84.1334429383278, 9.953153171808898, -84.13033694028854, 9.954719779271468]
zoom_level = 19
from predictor import download

image_download_path = download(
bbox,
zoom_level=zoom_level,
tms_url="bing",
tile_size=256,
download_path="/Users/kshitij/hotosm/fairpredictor/download/test",
)
print(image_download_path)
import os
import shutil
import tempfile
import unittest

import efficientnet.tfkeras as efn
import requests

from predictor import predict

# Global variables
TMS_URL = "https://tiles.openaerialmap.org/6501a65c0906de000167e64d/0/6501a65c0906de000167e64e/{z}/{x}/{y}"
BBOX = [100.56228021333352, 13.685230854641182, 100.56383321235313, 13.685961853747969]
FAIR_BASE_URL = "https://fair-dev.hotosm.org/api/v1/workspace/download"
DATASET_ID = "dataset_65"
TRAINING_ID = "training_297"


class TestPredictor(unittest.TestCase):
def setUp(self):
model_url = f"{FAIR_BASE_URL}/{DATASET_ID}/output/{TRAINING_ID}/checkpoint.h5"
self.model_path = tempfile.NamedTemporaryFile(suffix=".h5").name
response = requests.get(model_url, stream=True)
with open(self.model_path, "wb") as out_file:
shutil.copyfileobj(response.raw, out_file)

def tearDown(self):
if self.model_path:
try:
os.remove(self.model_path)
except OSError:
pass

def test_predict(self):
zoom_level = 20
predictions = predict(BBOX, self.model_path, zoom_level, TMS_URL)
self.assertIsInstance(predictions, dict)
self.assertTrue(len(predictions["features"]) > 0)


if __name__ == "__main__":
unittest.main()

0 comments on commit 36495b3

Please sign in to comment.