Catchall Functions for All Things ‘John Deere’
Initially a convenience package to access ‘John Deere’ ‘MowerPlus’ databases from ‘iOS’ backups but perpaps will be something more all-encompassing.
Ref:
- https://rud.is/b/2019/06/02/trawling-through-ios-backups-for-treasure-a-k-a-how-to-fish-for-target-files-in-ios-backups-with-r/
- https://rud.is/b/2019/06/09/wrapping-up-exploration-of-john-deeres-mowerplus-database/
The following functions are implemented:
from_coredata_ts
: Convert timestampes from Apple “CoreData” format to something usablelist_ios_backups
: List iOS backups available on this systemplatform_ios_backup_dir
: List iOS backups available on this systemsrc_mowerplus
: Find and sync a copy of the latest MowerPlus database file from an iOS backup
devtools::install_git("https://git.sr.ht/~hrbrmstr/deere.git")
# or
devtools::install_git("https://git.rud.is/hrbrmstr/deere.git")
# or
devtools::install_gitlab("hrbrmstr/deere")
# or
devtools::install_bitbucket("hrbrmstr/deere")
# or
devtools::install_github("hrbrmstr/deere")
library(deere)
library(hrbrthemes)
library(tidyverse)
# current version
packageVersion("deere")
## [1] '0.2.0'
list_ios_backups()
## # A tibble: 2 x 3
## path modification_time size
## <chr> <dttm> <fs::bytes>
## 1 28500cd31b9580aaf5815c695ebd3ea5f7455628 2019-06-19 14:31:41 8.19K
## 2 28500cd31b9580aaf5815c695ebd3ea5f7455628-20190601 2019-06-01 17:23:05 8.22K
mow_db <- src_mowerplus()
mow_db
## src: sqlite 3.22.0 [/Users/hrbrmstr/Data/mowtrack.sqlite]
## tbls: Z_METADATA, Z_MODELCACHE, Z_PRIMARYKEY, ZACTIVITY, ZDEALER, ZMOWALERT, ZMOWER, ZMOWLOCATION, ZSMARTCONNECTOR,
## ZUSER
glimpse(tbl(mow_db, "ZMOWER"))
## Observations: ??
## Variables: 23
## Database: sqlite 3.22.0 [/Users/hrbrmstr/Data/mowtrack.sqlite]
## $ Z_PK <int> 1
## $ Z_ENT <int> 7
## $ Z_OPT <int> 15
## $ ZDECKSIZEINCHES <int> 48
## $ ZDISMISSEDFULLSERVICETASK <int> 0
## $ ZDISMISSEDPERIODICTASK <int> 0
## $ ZSMARTCONNECTOR <int> NA
## $ ZUSER <int> 1
## $ ZBATTERYCHARGE <dbl> NA
## $ ZENGINEHOURS <dbl> 4.854714
## $ ZFULLSERVICEPERFORMED <dbl> NA
## $ ZHMCLASTSEEN <dbl> NA
## $ ZHMCOFFSET <dbl> 0
## $ ZPERIODICSERVICEPERFORMED <dbl> NA
## $ ZSCLASTCONNECTED <dbl> NA
## $ ZGENERICTYPE <chr> NA
## $ ZHMCIDENTIFIER <chr> NA
## $ ZMODEL <chr> "E140"
## $ ZSCPIN <chr> NA
## $ ZSCPERIPHERALID <chr> NA
## $ ZSERIALNUMBER <chr> "1GXE140EKKK116940"
## $ ZSERIES <chr> "E100"
## $ ZSCDATADICTIONARY <blob> <NA>
glimpse(tbl(mow_db, "ZACTIVITY"))
## Observations: ??
## Variables: 20
## Database: sqlite 3.22.0 [/Users/hrbrmstr/Data/mowtrack.sqlite]
## $ Z_PK <int> 1, 2, 3, 4
## $ Z_ENT <int> 3, 3, 3, 3
## $ Z_OPT <int> 124, 93, 52, 36
## $ ZMONTH <int> 6, 6, 6, 6
## $ ZYEAR <int> 2019, 2019, 2019, 2019
## $ ZMOWER <int> 1, 1, 1, 1
## $ ZUSER <int> 1, 1, 1, 1
## $ ZISCOMPLETE <int> 1, 1, 1, 1
## $ ZISMISSEDMOW <int> 0, 0, 0, 0
## $ ZLASTLOCATION <int> 7016, 12548, 15500, 17514
## $ ZCREATEDAT <dbl> 581100260, 581778616, 582506930, 582659215
## $ ZENGINEHOURS <dbl> NA, NA, NA, NA
## $ ZAREACOVERED <dbl> 3.761875, 2.286811, 1.292296, 1.078715
## $ ZAVERAGESPEED <dbl> 3.727754, 2.894269, 3.011241, 3.650042
## $ ZDISTANCEMOWED <dbl> 7.758894, 4.716564, 2.665370, 2.224857
## $ ZMOWINGTIME <dbl> 6960.000, 5548.939, 2933.049, 2034.981
## $ ZNOTES <chr> "First mow!", NA, NA, NA
## $ ZINTERVALNAME <chr> NA, NA, NA, NA
## $ ZTYPE <chr> NA, NA, NA, NA
## $ ZUUID <blob> blob[238 B], blob[238 B], blob[238 B], blob[238 B]
tbl(mow_db, "ZACTIVITY")%>%
collect() -> activity
activity %>%
select(
mow_date = ZCREATEDAT,
area_covered = ZAREACOVERED,
avg_speed = ZAVERAGESPEED,
distance = ZDISTANCEMOWED,
duration = ZMOWINGTIME
) %>%
arrange(mow_date) %>%
mutate(
duration = duration / 60 / 60, # hours
mow_date = format(from_coredata_ts(mow_date), "%b %d"), # factors make better bars
mow_date = factor(mow_date, levels = unique(mow_date)) # when there are just 2-of-em
) %>%
gather(measure, value, -mow_date) %>%
ggplot(aes(mow_date, value)) +
geom_col(aes(fill = measure), width = 0.5, show.legend = FALSE) +
scale_y_comma() +
scale_fill_ipsum() +
facet_wrap(~measure, scales = "free") +
theme_ipsum_rc(grid="Y")
zloc <- tbl(mow_db, "ZMOWLOCATION")
zloc %>%
select(
id = ZSESSION,
zorder = ZORDER,
lat = ZLATITUDE,
lng = ZLONGITUDE,
speed = ZSPEED,
ts = ZTIMESTAMP
) %>%
collect() %>%
mutate(
id = factor(id),
ts = from_coredata_ts(ts)
) -> sessions
ggplot(sessions, aes(id, speed)) +
ggbeeswarm::geom_quasirandom(
aes(fill = id), show.legend = FALSE,
shape = 21, size = 2, color = "white", stroke = 0.75
) +
scale_fill_ipsum() +
labs(x = "Mowing Session", y = "MPH", title = "Mowing Speed Comparison (mph)") +
theme_ipsum_rc(grid="Y")
arrange(sessions, ts) %>%
ggplot(aes(lng, lat)) +
geom_path(
aes(color = id, group = id), show.legend = FALSE,
size = 1, alpha = 1/2
) +
scale_color_ipsum() +
coord_quickmap() +
facet_wrap(~id) +
labs(title = "Mowing Path Comparison") +
theme_ipsum_rc(grid="Y") +
ggthemes::theme_map()
Lang | # Files | (%) | LoC | (%) | Blank lines | (%) | # Lines | (%) |
---|---|---|---|---|---|---|---|---|
Rmd | 1 | 0.12 | 75 | 0.53 | 33 | 0.56 | 43 | 0.38 |
R | 7 | 0.88 | 67 | 0.47 | 26 | 0.44 | 69 | 0.62 |
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.