Clone of Repo from https://github.com/dleutnant/influxdbr. The Original package has an error, that's why we should use this clone which has the required bug fix to work with current R versions...
You can install the dev version from github with:
install.packages("remotes") # maybe you already have this package, then you don't need to install it again
remotes::install_github("hslu-ige-laes/influxdbr")
interface to InfluxDB v1.x
This package allows you to fetch and write time series data from/to an InfluxDB server. Additionally, handy wrappers for the Influx Query Language (IQL) to manage and explore a remote database are provided.
This is a basic example which shows you how to communicate (i.e. query and write data) with the InfluxDB server.
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(influxdbr)
library(xts)
#> Loading required package: zoo
#>
#> Attaching package: 'zoo'
#> The following objects are masked from 'package:base':
#>
#> as.Date, as.Date.numeric
#> Registered S3 method overwritten by 'xts':
#> method from
#> as.zoo.xts zoo
#>
#> Attaching package: 'xts'
#> The following objects are masked from 'package:dplyr':
#>
#> first, last
Let’s create first some sample data from the xts package and assign arbitrary attributes:
# attach data "sample_matrix"
data("sample_matrix")
# create xts object
xts_data <- xts::as.xts(x = sample_matrix)
# assign some attributes
xts::xtsAttributes(xts_data) <- list(info = "SampleDataMatrix",
UnitTesting = TRUE,
n = 180,
source = "xts")
# print structure to inspect the object
str(xts_data)
#> An 'xts' object on 2007-01-02/2007-06-30 containing:
#> Data: num [1:180, 1:4] 50 50.2 50.4 50.4 50.2 ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : NULL
#> ..$ : chr [1:4] "Open" "High" "Low" "Close"
#> Indexed by objects of class: [POSIXct,POSIXt] TZ:
#> xts Attributes:
#> List of 4
#> $ info : chr "SampleDataMatrix"
#> $ UnitTesting: logi TRUE
#> $ n : num 180
#> $ source : chr "xts"
To connect to an InfluxDB server, we need a connection object. A
connection object can be created by providing usual server details
(e.g. host
, port
, …) or with help of a group file, which
conveniently holds all information for us (s. package documentation):
# create connection object
# (here: based on a config file with group "admin" in it (s. package documentation))
con <- influx_connection(group = "admin")
#> Success: (204) No Content
The influxdbr
package provides handy wrappers to manage a remote
InfluxDB:
# create new database
create_database(con = con, db = "mydb")
# list all databases
show_databases(con = con) %>%
filter(name == "mydb") # show the db created above only
#> Warning: `.drop` is deprecated. All list-columns are now preserved.
#> # A tibble: 1 x 1
#> name
#> <chr>
#> 1 mydb
Writing an xts-object to the server can be achieved with influx_write
.
In this case, columnnames of the xts
object are used as InfluxDB’s
field keys, xts
’s coredata represent field values. Attributes are
preserved and written as tag keys and values, respectively.
# write example xts-object to database
influx_write(con = con,
db = "mydb",
x = xts_data,
measurement = "sampledata")
Writing a data.frame (or tibble) to the server can also be achieved with
influx_write
. In this case, we need to specify which columns of the
data.frame represent time and tags. Fields are automatically
determined.Each row represents a unique data point. NA
’s are not
supported and need to be removed. Timestamps should be located in column
time
.
Remember that time and tags are optional: InfluxDB uses the server’s local nanosecond timestamp in UTC if the timestamp is not included with the point.
# convert the existing xts-object to data.frame
df_data <- dplyr::bind_cols(time = zoo::index(xts_data), # timestamp
data.frame(xts_data)) %>% # coredata
dplyr::mutate(info = "SampleDataMatrix", # add tag 'info'
UnitTesting = TRUE, # add tag 'UnitTesting'
n = row_number(), # add tag 'n'
source = "df") # add source 'df'
df_data
#> # A tibble: 180 x 9
#> time Open High Low Close info UnitTesting n
#> <dttm> <dbl> <dbl> <dbl> <dbl> <chr> <lgl> <int>
#> 1 2007-01-02 00:00:00 50.0 50.1 50.0 50.1 Samp… TRUE 1
#> 2 2007-01-03 00:00:00 50.2 50.4 50.2 50.4 Samp… TRUE 2
#> 3 2007-01-04 00:00:00 50.4 50.4 50.3 50.3 Samp… TRUE 3
#> 4 2007-01-05 00:00:00 50.4 50.4 50.2 50.3 Samp… TRUE 4
#> 5 2007-01-06 00:00:00 50.2 50.2 50.1 50.2 Samp… TRUE 5
#> 6 2007-01-07 00:00:00 50.1 50.2 50.0 50.0 Samp… TRUE 6
#> 7 2007-01-08 00:00:00 50.0 50.1 50.0 50.0 Samp… TRUE 7
#> 8 2007-01-09 00:00:00 50.0 50.0 49.8 49.9 Samp… TRUE 8
#> 9 2007-01-10 00:00:00 49.9 50.1 49.9 50.0 Samp… TRUE 9
#> 10 2007-01-11 00:00:00 49.9 50.2 49.9 50.2 Samp… TRUE 10
#> # … with 170 more rows, and 1 more variable: source <chr>
# write example data.frame to database
influx_write(con = con,
db = "mydb",
x = df_data,
time_col = "time", tag_cols = c("info", "UnitTesting", "n", "source"),
measurement = "sampledata")
We can now check if the time series were successfully written:
# check if measurements were succefully written
show_measurements(con = con, db = "mydb")
#> Warning: `.drop` is deprecated. All list-columns are now preserved.
#> # A tibble: 1 x 1
#> name
#> <chr>
#> 1 sampledata
To query the database, two functions influx_query
and influx_select
are available. influx_select
wraps around influx_query
and can be
useful for simple requests because it provides default query parameters.
The return type can be configured to be of class tibble
or of class
xts
.
If return_xts = FALSE
a list of tibbles per query statement is
returned. Each tibble contains columns with statement_id,
series_names, tags, time and fields.
# fetch time series data by using the helper function `influx_select`
result <- influx_select(con = con,
db = "mydb",
field_keys = "Open, High",
measurement = "sampledata",
where = "source = 'df'",
group_by = "*",
limit = 10,
order_desc = TRUE,
return_xts = FALSE)
#> Warning: `.drop` is deprecated. All list-columns are now preserved.
#> Warning: `.drop` is deprecated. All list-columns are now preserved.
result
#> [[1]]
#> # A tibble: 180 x 10
#> statement_id series_names UnitTesting info n source
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 0 sampledata TRUE Samp… 99 df
#> 2 0 sampledata TRUE Samp… 98 df
#> 3 0 sampledata TRUE Samp… 97 df
#> 4 0 sampledata TRUE Samp… 96 df
#> 5 0 sampledata TRUE Samp… 95 df
#> 6 0 sampledata TRUE Samp… 94 df
#> 7 0 sampledata TRUE Samp… 93 df
#> 8 0 sampledata TRUE Samp… 92 df
#> 9 0 sampledata TRUE Samp… 91 df
#> 10 0 sampledata TRUE Samp… 90 df
#> # … with 170 more rows, and 4 more variables: time <dttm>, Open <dbl>,
#> # High <dbl>, series_partial <lgl>
If return_xts = TRUE
a list of xts objects per query statement is
returned. Because xts objects are basically matrices (which can store
one data type only), a single xts object is created for each InfluxDB
field. This ensures a correct representation of the field values data
type (instead of getting all into a “character” matrix). InfluxDB tags
are now xts attributes.
# fetch time series data by using the helper function `influx_select`
result <- influx_select(con = con,
db = "mydb",
field_keys = "Open, High",
measurement = "sampledata",
where = "source = 'xts'",
group_by = "*",
limit = 10,
order_desc = TRUE,
return_xts = TRUE)
#> Warning: `.drop` is deprecated. All list-columns are now preserved.
#> Warning: `.drop` is deprecated. All list-columns are now preserved.
str(result)
#> List of 1
#> $ :List of 3
#> ..$ sampledata:An 'xts' object on 2007-06-20 22:00:00/2007-06-29 22:00:00 containing:
#> Data: num [1:10, 1] 47.7 47.6 47.2 47.2 47.2 ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : NULL
#> ..$ : chr "Open"
#> Indexed by objects of class: [POSIXct,POSIXt] TZ: GMT
#> xts Attributes:
#> List of 6
#> .. ..$ statement_id: int 0
#> .. ..$ series_names: chr "sampledata"
#> .. ..$ UnitTesting : chr "TRUE"
#> .. ..$ info : chr "SampleDataMatrix"
#> .. ..$ n : chr "180"
#> .. ..$ source : chr "xts"
#> ..$ sampledata:An 'xts' object on 2007-06-20 22:00:00/2007-06-29 22:00:00 containing:
#> Data: num [1:10, 1] 47.7 47.6 47.2 47.3 47.4 ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : NULL
#> ..$ : chr "High"
#> Indexed by objects of class: [POSIXct,POSIXt] TZ: GMT
#> xts Attributes:
#> List of 6
#> .. ..$ statement_id: int 0
#> .. ..$ series_names: chr "sampledata"
#> .. ..$ UnitTesting : chr "TRUE"
#> .. ..$ info : chr "SampleDataMatrix"
#> .. ..$ n : chr "180"
#> .. ..$ source : chr "xts"
#> ..$ sampledata:An 'xts' object on 2007-06-20 22:00:00/2007-06-29 22:00:00 containing:
#> Data: logi [1:10, 1] FALSE FALSE FALSE FALSE FALSE FALSE ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : NULL
#> ..$ : chr "series_partial"
#> Indexed by objects of class: [POSIXct,POSIXt] TZ: GMT
#> xts Attributes:
#> List of 6
#> .. ..$ statement_id: int 0
#> .. ..$ series_names: chr "sampledata"
#> .. ..$ UnitTesting : chr "TRUE"
#> .. ..$ info : chr "SampleDataMatrix"
#> .. ..$ n : chr "180"
#> .. ..$ source : chr "xts"
In case the InfluxDB response is expected to be a single series only, we
can flatten the list (simplifyList = TRUE
) to directly get to the
data. This enhances a pipeable work flow.
result <- influx_select(con = con,
db = "mydb",
field_keys = "Open",
measurement = "sampledata",
where = "source = 'df'",
group_by = "*",
limit = 10,
order_desc = TRUE,
return_xts = FALSE,
simplifyList = TRUE)
#> Warning: `.drop` is deprecated. All list-columns are now preserved.
#> Warning: `.drop` is deprecated. All list-columns are now preserved.
str(result)
#> Classes 'tbl_df', 'tbl' and 'data.frame': 180 obs. of 9 variables:
#> $ statement_id : int 0 0 0 0 0 0 0 0 0 0 ...
#> $ series_names : chr "sampledata" "sampledata" "sampledata" "sampledata" ...
#> $ UnitTesting : chr "TRUE" "TRUE" "TRUE" "TRUE" ...
#> $ info : chr "SampleDataMatrix" "SampleDataMatrix" "SampleDataMatrix" "SampleDataMatrix" ...
#> $ n : chr "99" "98" "97" "96" ...
#> $ source : chr "df" "df" "df" "df" ...
#> $ time : POSIXct, format: "2007-04-09 22:00:00" "2007-04-08 22:00:00" ...
#> $ Open : num 49.6 49.4 49.5 49.5 49.3 ...
#> $ series_partial: logi FALSE FALSE FALSE FALSE FALSE FALSE ...
This Git repository contains the latest contributions to the R package
influxdbr
and other code that will appear in the next
CRAN release.
Contributing to this package is easy. Just send a pull
request. Your PR
should pass R CMD check --as-cran
, which will also be checked by
Travis CI when
the PR is submitted.
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
To cite package ‘influxdbr’ in publications use:
Dominik Leutnant (2018). influxdbr: R Interface to InfluxDB. R package version 0.14.3.9000. https://github.com/dleutnant/influxdbr
A BibTeX entry for LaTeX users is
@Manual{, title = {influxdbr: R Interface to InfluxDB}, author = {Dominik Leutnant}, year = {2018}, note = {R package version 0.14.3.9000}, url = {https://github.com/dleutnant/influxdbr}, }