Skip to content
/ STEMM Public

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

License

Notifications You must be signed in to change notification settings

ictnlp/STEMM

Repository files navigation

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation

This is a PyTorch implementation for the ACL 2022 main conference paper STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation.

Training a Model on MuST-C

Let's first take a look at training an En-De model as an example.

Enviroment Configuration

  1. Clone this repository:
git clone git@github.com:ictnlp/STEMM.git
cd STEMM/
  1. Install Montreal Forced Aligner following the official guidance. Please also download the pertained models and dictionary for MFA.

  2. Please make sure you have installed PyTorch, and then install fairseq and other packages as follows:

pip install --editable ./
python3 setup.py install --user
python3 setup.py build_ext --inplace
pip install inflect sentencepiece soundfile textgrid pandas

Data Preparation

  1. First make a directory to store the dataset:
TGT_LANG=de
MUSTC_ROOT=data/mustc/
mkdir -p $MUSTC_ROOT
  1. Download the MuST-C v1.0 archive MUSTC_v1.0_en-de.tar.gz to the $MUSTC_ROOT path, and uncompress it:
cd $MUSTC_ROOT
tar -xzvf MUSTC_v1.0_en-de.tar.gz
  1. Return to the root directory, run the preprocess script preprocess.sh, which will perform forced alignment and organize the raw data and alignment information into .tsv format for using:
sh preprocess.sh $TGT_LANG
  1. Finally, the directory $MUSTC_ROOT should look like this:
.
├── en-de
│   ├── config_raw.yaml
│   ├── data
│   ├── dev_raw_seg_plus.tsv
│   ├── docs
│   ├── segment
│   ├── spm_unigram10000_raw.model
│   ├── spm_unigram10000_raw.txt
│   ├── spm_unigram10000_raw.vocab
│   ├── train_raw_seg_plus.tsv
│   ├── tst-COMMON_raw_seg_plus.tsv
│   ├── tst-HE_raw_seg_plus.tsv
└── MUSTC_v1.0_en-de.tar.gz

Pretrain the MT Module

[OPTIONAL] Use External MT Corpus

If you want to use external MT corpus, please first pretrain a MT model on this corpus following these steps:

  1. Perform BPE on external corpus with the sentencepiece model learned on MuST-C. As we mentioned in our paper, we use WMT for En-De, En-Fr, En-Ru, En-Es, En-Ro, and OPUS100 for En-Pt, En-It, En-Nl as external corpus. You can download them from the internet and put them in the data/ext_en${TGT_LANG}/ directory. Run the following command and replace $input_file with the path of raw text to perform BPE. You should apply BPE to texts in both source and target language of all subset (train/valid/test).
python3 data/scripts/apply_spm.py --input-file $input_file --output-file $output_file --model data/mustc/en-${TGT_LANG}/spm_unigram10000_raw.model
  1. Use fairseq-preprocess command to convert the BPE texts into fairseq formats. Make sure to use the sentencepiece dictionary learned on MuST-C.
$spm_dict=data/mustc/en-${TGT_LANG}/spm_unigram10000_raw.txt
fairseq-preprocess --source-lang en --target-lang $TGT_LANG --trainpref data/ext_en${TGT_LANG}/train --validpref data/ext_en${TGT_LANG}/valid --testpref data/ext_en${TGT_LANG}/test --destdir data/ext_en${TGT_LANG}/binary --joined-dictionary --srcdict $spm_dict --tgtdict $spm_dict --workers=20 --nwordssrc 10000 --nwordstgt 10000
  1. Train the model using the following command:
sh pretrain_mt_ext.sh $TGT_LANG

Pretrain the MT module on MuST-C

  1. Run the following script to pretrain the MT module. The argument --load-pretrained-mt-encoder-decoder-from indicates the path of MT model pretrained on external corpus obtained in the last step.
sh pretrain_mt.sh $TGT_LANG
  1. To ensure consistent performance, we have released our checkpoints of pretrained MT modules. You can download them and directly use them do initialize the MT module in our model for the following experiments.
Direction Link
En-De https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_ende_mt.pt
En-Fr https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enfr_mt.pt
En-Es https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enes_mt.pt
En-Ro https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enro_mt.pt
En-Ru https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enru_mt.pt
En-Nl https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_ennl_mt.pt
En-It https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enit_mt.pt
En-Pt https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enpt_mt.pt

Training

  1. Download the pretrained wav2vec2.0 model from the official link, and put it in the checkpoints/ directory.
  2. Just run the training scripts:
sh train.sh $TGT_LANG

Evaluate

  1. Run the following script to average the last 10 checkpoints and evaluate on the tst-COMMON set:
sh test.sh mustc_en${TGT_LANG}_stmm_self_learning $TGT_LANG
  1. We also released our checkpoints as follows. You can download and evaluate them directly.
Direction Link
En-De https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_ende_stmm_self_learning.pt
En-Fr https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enfr_stmm_self_learning.pt
En-Es https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enes_stmm_self_learning.pt
En-Ro https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enro_stmm_self_learning.pt
En-Ru https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enru_stmm_self_learning.pt
En-Nl https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_ennl_stmm_self_learning.pt
En-It https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enit_stmm_self_learning.pt
En-Pt https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enpt_stmm_self_learning.pt

Citation

If this repository is useful for you, please cite as:

@inproceedings{fang-etal-2022-STEMM,
	title = {STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation},
	author = {Fang, Qingkai and Ye, Rong and Li, Lei and Feng, Yang and Wang, Mingxuan},
	booktitle = {Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics},
	year = {2022},
}

Contact

If you have any questions, feel free to contact me at fangqingkai21b@ict.ac.cn.

About

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages