Skip to content

Commit

Permalink
Merge pull request #58 from imperialCHEPI/confidence
Browse files Browse the repository at this point in the history
arrange numbered steps
  • Loading branch information
SaranjeetKaur authored Aug 29, 2024
2 parents 7cec460 + 4e88f42 commit 70c7a7b
Show file tree
Hide file tree
Showing 2 changed files with 14 additions and 68 deletions.
35 changes: 7 additions & 28 deletions R/data-process.R
Original file line number Diff line number Diff line change
Expand Up @@ -5,40 +5,19 @@
#'
#' ## Step-by-Step Usage:
#'
#' 1. **Read the data**: This function reads the data from the location specified.
#' ```{r, eval=FALSE}
#' data <- readRDS("data.rds")
#' ```
#' 1. **Read the data**: This function reads the data from the location specified `data <- readRDS("data.rds")`.
#'
#' 2. **`gen_data_mean`**: Calculates weighted mean values for various metrics over years.
#' ```{r, eval=FALSE}
#' data_weighted <- gen_data_mean(data)
#' ```
#' 1. **`gen_data_mean`**: Calculates weighted mean values for various metrics over years `data_weighted <- gen_data_mean(data)`.
#'
#' 3. **`gen_data_weighted_rf`**: Calculates the differences between intervention and baseline values for risk factors.
#' ```{r, eval=FALSE}
#' data_weighted_rf_wide_collapse <- gen_data_weighted_rf(data_weighted)
#' ```
#' 1. **`gen_data_weighted_rf`**: Calculates the differences between intervention and baseline values for risk factors `data_weighted_rf_wide_collapse <- gen_data_weighted_rf(data_weighted)`.
#'
#'4. **`gen_data_weighted_ds`**: Calculates the differences between intervention and baseline values for incidences.
#' ```{r, eval=FALSE}
#' data_weighted_ds_wide_collapse <- gen_data_weighted_ds(data_weighted)
#' ```
#' 1. **`gen_data_weighted_ds`**: Calculates the differences between intervention and baseline values for incidences `data_weighted_ds_wide_collapse <- gen_data_weighted_ds(data_weighted)`.
#'
#'5. **`gen_data_weighted_burden`**: Calculates the differences between intervention and baseline values for burden of disease.
#' ```{r, eval=FALSE}
#' data_weighted_burden_wide_collapse <- gen_data_weighted_burden(data_weighted)
#' ```
#' 1. **`gen_data_weighted_burden`**: Calculates the differences between intervention and baseline values for burden of disease `data_weighted_burden_wide_collapse <- gen_data_weighted_burden(data_weighted)`.
#'
#'6. **`gen_data_weighted_burden_spline`**: Performs data smoothing for burden of disease, when necessary. For instance, with only a few simulations, there can be positive values in difference in burden of disease.
#' ```{r, eval=FALSE}
#' data_weighted_burden_spline <- gen_data_weighted_burden_spline(data_weighted_burden_wide_collapse)
#' ```
#' 1. **`gen_data_weighted_burden_spline`**: Performs data smoothing for burden of disease, when necessary. For instance, with only a few simulations, there can be positive values in difference in burden of disease `data_weighted_burden_spline <- gen_data_weighted_burden_spline(data_weighted_burden_wide_collapse)`.
#'
#'7. **`gen_data_le`**: Calculates life expectancy for various age and groups.
#' ```{r, eval=FALSE}
#' data_ple_wide <- gen_data_le(data_weighted)
#' ```
#' 1. **`gen_data_le`**: Calculates life expectancy for various age and groups `data_ple_wide <- gen_data_le(data_weighted)`.
#'
#' ## Examples
#' ```r
Expand Down
47 changes: 7 additions & 40 deletions man/DataProcessing.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

0 comments on commit 70c7a7b

Please sign in to comment.