Skip to content

Commit

Permalink
fix typos (#140)
Browse files Browse the repository at this point in the history
* fix typos

Signed-off-by: Zhang, Weiwei1 <weiwei1.zhang@intel.com>

* bugfix

Signed-off-by: Zhang, Weiwei1 <weiwei1.zhang@intel.com>

---------

Signed-off-by: Zhang, Weiwei1 <weiwei1.zhang@intel.com>
  • Loading branch information
WeiweiZhang1 authored May 31, 2024
1 parent aafb82e commit 4d2d259
Show file tree
Hide file tree
Showing 3 changed files with 42 additions and 38 deletions.
3 changes: 2 additions & 1 deletion auto_round/autoround.py
Original file line number Diff line number Diff line change
Expand Up @@ -1671,7 +1671,7 @@ class AutoAdamRound(AutoOPTRound):
dynamic_max_gap (int): The dynamic maximum gap (default is -1).
data_type (str): The data type to be used (default is "int").
optimizer: string or object
scale_dtype (str): The data type of quantization scale to be used (default is "float32"), different kernels
scale_dtype (str): The data type of quantization scale to be used (default is "float16"), different kernels
have different choices.
Returns:
Expand Down Expand Up @@ -1743,3 +1743,4 @@ def __init__(
optimizer,
**kwargs,
)

74 changes: 38 additions & 36 deletions examples/language-modeling/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,46 +5,16 @@ This document presents step-by-step instructions for auto-round.

# Prerequisite

## 1. Environment

PyTorch 1.8 or higher version is needed
The transformers version required varies across different types of models. Here, the transformers version used for running models during experiments is provided as a reference.

| Model | Transformers version |
| :----: | :----: |
| EleutherAI/gpt-j-6b | 4.28/4.30/4.34/4.36 |
| huggyllama/llama-7b | 4.28/4.30/4.34/4.36 |
| meta-llama/Llama-2-7b-hf | 4.30/4.34/4.36 |
| facebook/opt-6.7b | 4.28/4.30/4.34/4.36 |
| tiiuae/falcon-7b | 4.28/4.30/4.34/4.36 |
| mosaicml/mpt-7b | 4.28/4.30/4.34/4.36 |
| mosaicml/mpt-7b-chat | 4.34 |
| bigscience/bloom-7b1 | 4.28/4.30/4.34/4.36 |
| baichuan-inc/Baichuan2-7B-Chat | 4.36 |
| Qwen/Qwen-7B | 4.28/4.30/4.34/4.36 |
| Qwen/Qwen1.5-7B-Chat | 4.38/4.40 |
| THUDM/chatglm3-6b | 4.34/4.36 |
| mistralai/Mistral-7B-v0.1 | 4.34/4.36 |
| MBZUAI/LaMini-GPT-124M | 4.34/4.36 |
| EleutherAI/gpt-neo-125m | 4.34 |
| databricks/dolly-v2-3b | 4.34 |
| stabilityai/stablelm-base-alpha-3b | 4.34 |
| Intel/neural-chat-7b-v3 | 4.34/4.36 |
| rinna/bilingual-gpt-neox-4b | 4.36 |
| microsoft/phi-2 | 4.36 |
| google/gemma-7b | 4.38/4.40 |
| Salesforce/codegen25-7b-multi | 4.33.2|


## 2. Prepare Calibration Dataset
## 1. Prepare Calibration Dataset

### Default Dataset
The [NeelNanda/pile-10k](https://huggingface.co/datasets/NeelNanda/pile-10k) in huggingface is adopted as the default calibration data and will be downloaded automatically from the datasets Hub. To customize a dataset, please kindly follow our dataset code.
See more about loading [huggingface dataset](https://huggingface.co/docs/datasets/main/en/quickstart)

### Customized Dataset
- Option 1: Pass a local json file path to dataset argument
- Option 2: Register your dataset following the [code](../../auto_round/calib_dataset.py) and pass the new dataset&split args to initialize AutoRound object,e.g. autoround=Autoround(dataset="NeelNanda/pile-10k:train",...)
- Option 2: Register your dataset following the [code](../../auto_round/calib_dataset.py) and pass the new dataset and split args to initialize AutoRound object, e.g. autoround=Autoround(dataset="NeelNanda/pile-10k:train", ...)
- Option 3: pass list of string or list of input_ids to dataset.
~~~python
def customized_data():
Expand All @@ -65,11 +35,11 @@ def customized_data_with_tokenizer(tokenizer, seqlen=2048):
return tokens
~~~

Combination of different datasets has been supported, --dataset "./tmp.json,NeelNanda/pile-10k:train, mbpp:train+validation+test". Please note that samples with sequence length < args.seq will be dropped.
Combination of different datasets has been supported, --dataset "./tmp.json,NeelNanda/pile-10k:train, mbpp:train+validation+test". Please note that samples with sequence length < args.seqlen will be dropped.

<br />

## 3. Run Examples
## 2. Run Examples
Enter into the examples folder and install lm-eval to run the evaluation
```bash
pip install -r requirements.txt
Expand Down Expand Up @@ -123,7 +93,7 @@ bash run_autoround_on_gaudi.sh
## 4. Evaluation
## 3. Evaluation
The example supports evaluation for various tasks in lm_eval. Moreover, it facilitates separate evaluation through the 'evaluation.py' script, which extends support to three additional tasks (ptb, c4, and wikitext2) beyond the capabilities of the official lm_eval. Additionally, evaluation results will be neatly organized into an Excel file for ease of demonstration.
For large models, GPU memory may be insufficient. Enable multi-GPU evaluation by setting 'CUDA_VISIBLE_DEVICES'.
Expand All @@ -144,11 +114,42 @@ CUDA_VISIBLE_DEVICES=1,2 python3 eval/evaluation.py --model_name /save_model_pat
You can also utilize the official lm_eval [link](https://github.com/EleutherAI/lm-evaluation-harness/tree/main?tab=readme-ov-file#basic-usage).
## 5. Known Issues
## 4. Known Issues
* Random issues in tuning Qwen models
* ChatGlm-V1 is not supported
## 5. Environment
PyTorch 1.8 or higher version is needed
The transformers version required varies across different types of models. Here, the transformers version used for running models during experiments is provided as a reference.
| Model | Transformers version |
| :----: | :----: |
| EleutherAI/gpt-j-6b | 4.28/4.30/4.34/4.36 |
| huggyllama/llama-7b | 4.28/4.30/4.34/4.36 |
| meta-llama/Llama-2-7b-hf | 4.30/4.34/4.36 |
| facebook/opt-6.7b | 4.28/4.30/4.34/4.36 |
| tiiuae/falcon-7b | 4.28/4.30/4.34/4.36 |
| mosaicml/mpt-7b | 4.28/4.30/4.34/4.36 |
| mosaicml/mpt-7b-chat | 4.34 |
| bigscience/bloom-7b1 | 4.28/4.30/4.34/4.36 |
| baichuan-inc/Baichuan2-7B-Chat | 4.36 |
| Qwen/Qwen-7B | 4.28/4.30/4.34/4.36 |
| Qwen/Qwen1.5-7B-Chat | 4.38/4.40 |
| THUDM/chatglm3-6b | 4.34/4.36 |
| mistralai/Mistral-7B-v0.1 | 4.34/4.36 |
| MBZUAI/LaMini-GPT-124M | 4.34/4.36 |
| EleutherAI/gpt-neo-125m | 4.34 |
| databricks/dolly-v2-3b | 4.34 |
| stabilityai/stablelm-base-alpha-3b | 4.34 |
| Intel/neural-chat-7b-v3 | 4.34/4.36 |
| rinna/bilingual-gpt-neox-4b | 4.36 |
| microsoft/phi-2 | 4.36 |
| google/gemma-7b | 4.38/4.40 |
| Salesforce/codegen25-7b-multi | 4.33.2|
## Reference
If you find SignRound useful for your research, please cite our paper:
```bash
Expand All @@ -165,3 +166,4 @@ If you find SignRound useful for your research, please cite our paper:
3 changes: 2 additions & 1 deletion examples/language-modeling/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -301,7 +301,7 @@ def get_library_version(library_name):
deployment_device = args.deployment_device.split(',')
gpu_format = "auto_gptq"
if 'gpu' in deployment_device:
if lm_head_layer_name in weight_config.keys():
if lm_head_layer_name in weight_config.keys() and weight_config[lm_head_layer_name]["data_type"] == "int":
gpu_format = "autoround"

autoround = round(model, tokenizer, args.bits, args.group_size, sym=args.sym, batch_size=args.train_bs,
Expand Down Expand Up @@ -344,3 +344,4 @@ def get_library_version(library_name):
eval_bs=args.eval_bs, use_accelerate=not args.disable_low_gpu_mem_usage,
device=torch_device, excel_file=excel_name)


0 comments on commit 4d2d259

Please sign in to comment.