Scientific discourse tagger implementation for EACL 2021 paper Scientific Discourse Tagging for Evidence Extraction. There is a video available! The poster is also available in this repo.
This is a discourse tagger that tags each clause in a given paragraph from a biomedical paper with 8 types of discourse types, such as "fact", "method", "result", "implication" etc. The paper will be available as soon as it's published.
For the implementation of feature-based CRF for evidence fragment detection, please refer to FigureSpanDetection.
If you have any question, please contact lixiangci8@gmail.com.
- Python 3
- Tensorflow (tested with v1.12, either gpu or non-gpu version is fine. If you encounter any issue, give a shot to v1.14)
- Keras (tested with v2.2.4, either gpu or non-gpu version is fine)
- Scikit-learn
- Keras-bert
- Pre-trained embedding
Our discourse tagger expects inputs to lists of clauses or sentences, with paragraph boundaries identified, i.e., each line in the input file needs to be a clause or sentence and paragraphs should be separated by blank lines.
If you are training, the file additionally needs labels at the clause level, which can be specified on each line, after the clause, separated by a tab.
As explained in the paper, the model is intended for tagging discourse elements in biomedical research papers, and we use the seven label taxonomy described in De Waard and Pander Maat (2012) and additional "none" label for SciDT dataset and PubMed-RCT. For the detailed usage, check our paper.
If you want to tag your own data, you can parse your sentences into clauses following this instruction.
- Follow the instruction of SciBERT, download the pretrained weights. Remeber to correct the file names to match the hard-coded name in BERT code.
Trained SciBERT + LSTM-Attention + BiLSTM+CRF model:
For each model, put the CONTENT of the decompressed content to the root directory of this repo.
python -u discourse_tagger_generator_bert.py --repfile REPFILE --train_file TRAINFILE --validation_file DEVFILE --use_attention --att_context LSTM_clause --bidirectional --crf --save --maxseqlen 40 --maxclauselen 60
where REPFILE
is the BERT embedding path. --use_attention
is recommended. --att_context
is the type of attention. --bidirectional
means use bidirectional LSTM for sequence tagger. --crf
means use CRF as the last layer. --save
to save the trained model. Check out the help messages for discourse_tagger_generator_bert.py
for more options.
After you train successfully, three new files appear in the directory, with file names starting model_
.
You can specify test files while training itself using --test_files
arguments. Alternatively, you can do it after training is done. In the latter case, discourse_tagger
assumes the trained model files described above are present in the directory.
python -u discourse_tagger_generator_bert.py --repfile REPFILE --test_file TESTFILE1 [TESTFILE2 ..] --use_attention --att_context LSTM_clause --bidirectional --crf --maxseqlen 40 --maxclauselen 60
Make sure you use the same options for attention, context and bidirectional as you used for training.
Please use the following BibTeX to cite our paper:
@inproceedings{li2021scientific,
title={Scientific Discourse Tagging for Evidence Extraction},
author={Li, Xiangci and Burns, Gully and Peng, Nanyun},
booktitle={Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume},
pages={2550--2562},
year={2021}
}