Skip to content

BERT-based senti- ment annotation is used to create unbiased datasets and then hybridize RNN with LSTM to find calculated ratings based on this unbiased reviews dataset.

Notifications You must be signed in to change notification settings

jahid-jabed/ratings_cal_zoom

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Actual Rating Calculation of the Zoom Cloud Meetings App using User Reviews on Google Play Store with Sentiment Annotation of BERT and Hybridization of RNN and LSTM


A. Environment

  • Google Colaboratory: This project use Google Colaboratory for compute purpose.
  • RAM: 12 GB, Disk Space: 80 GB
  • Compute Engine: GPU
  • Language: Python

B. Datasets

  • The datsets used in this work and the saved model data will found in this link.
  • Reviews.csv - includes all the raw reviews collected with other information.
  • App_Reviews.csv(/.xlsx) - includes only used raw reviews.
  • Zoom_Reviews - includes only the zoom app reviews collected.
  • /Pickle Data - includes process datasets and models saved data.
  • /Pickle Data/Models - includes model saved data for Dataset #1.
  • /Pickle Data/Model_2 - includes model saved data for Dataset #2.
  • /Pickle Data/Model_3 - includes model saved data for Dataset #3.
  • /Pickle Data/Model_4 - includes model saved data for Dataset #4.

C. Codes

D. Results and Performance

  • Summary of precisions (P), recalls (R), f1-scores (F1), and accuracies (A) of DS - 1, DS - 2, DS - 3, and DS - 4.
Ratings DS - 1 DS - 2 DS - 3 DS - 4
P R F1 A P R F1 A P R F1 A P R F1 A
0.61 0.58 0.59 0.54 0.67 0.60 0.68 0.71 0.69 0.48 0.67 0.56
☆☆ 0.41 0.30 0.35 0.32 0.12 0.18 0.00 0.00 0.00 0.00 0.00 0.00
Our Models ☆☆☆ 0.47 0.28 0.35 0.61 0.38 0.29 0.33 0.45 0.33 0.25 0.29 0.71 0.35 0.21 0.27 0.54
☆☆☆☆ 0.43 0.20 0.27 0.37 0.38 0.37 0.38 0.11 0.17 0.41 0.10 0.16
☆☆☆☆☆ 0.67 0.89 0.76 0.49 0.65 0.56 0.76 0.94 0.84 0.60 0.87 0.71
BERT Base # BERT Base RNN LSTM
0.81 0.82 0.82 0.53 0.68 0.59 0.40 0.42 0.41 0.38 0.51 0.44
☆☆ 0.51 0.59 0.55 0.30 0.28 0.29 0.00 0.00 0.00 0.00 0.00 0.00
Pretrained Models ☆☆☆ 0.33 0.47 0.39 0.67 0.43 0.35 0.38 0.53 0.39 0.35 0.47 0.45 0.34 0.29 0.31 0.47
☆☆☆☆ 0.60 0.61 0.60 0.31 0.40 0.35 0.36 0.06 0.11 0.36 0.11 0.17
☆☆☆☆☆ 0.71 0.67 0.69 0.77 0.67 0.72 0.55 0.83 0.66 0.55 0.83 0.66

# Use pre-processed unbiased dataset based on BERT Base

  • Calculated average rating of the Zoom Cloud Meetings App and All Apps with actual average rating.
Model Trained on Dataset Calculated Average Ratings Pooled Average Rating Average Rating on Dataset
Zoom Cloud Meetings App All Apps Zoom Cloud Meetings App All Apps Zoom Cloud Meetings App All Apps
DS - 1 3.70 3.97
DS - 2 3.01 3.03 3.60 3.73 3.08 3.42
DS - 3 3.96 4.21
DS - 4 3.71 3.70

E. Dependencies

  • The dataset importation from Google Drive and saving model data into Google Drive required permission of drive.

About

BERT-based senti- ment annotation is used to create unbiased datasets and then hybridize RNN with LSTM to find calculated ratings based on this unbiased reviews dataset.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages