Skip to content

jahongir7174/YUNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YUNet Face and 5 Point Landmark Detection implementation using PyTorch

Installation

conda create -n YUNet python=3.11.11
conda activate YUNet
conda install python=3.11.11 pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install opencv-python
pip install PyYAML
pip install tqdm

Train

  • Configure your dataset path in main.py for training
  • Run bash main.sh $ --train for training, $ is number of GPUs

Test

  • Configure your dataset path in main.py for testing
  • Run python main.py --test for testing

Results

Model AP_easy AP_medium AP_hard #Params Params Ratio MFlops (320x320) FPS(320x320)
SCRFD0.5(ICLR2022) 0.892 0.885 0.819 631,410 8.32x 184 284
Retinaface0.5(CVPR2020) 0.907 0.883 0.742 426,608 5.62X 245 235
YuNet_n(Original) 0.892 0.883 0.811 75,856 1.00x 149 456
YuNet_n(Ours) 0.896 0.887 0.818 72,928 1.00x 133 456

Dataset structure

├── WIDERFace 
    ├── images
        ├── train
            ├── 1111.jpg
            ├── 2222.jpg
        ├── val
            ├── 1111.jpg
            ├── 2222.jpg
    ├── labels
        ├── train
            ├── 1111.txt
            ├── 2222.txt
        ├── val
            ├── 1111.txt
            ├── 2222.txt

Evaluation on WIDERFace Dataset

Reference