YUNet Face and 5 Point Landmark Detection implementation using PyTorch
conda create -n YUNet python=3.11.11
conda activate YUNet
conda install python=3.11.11 pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install opencv-python
pip install PyYAML
pip install tqdm
- Configure your dataset path in
main.py
for training - Run
bash main.sh $ --train
for training,$
is number of GPUs
- Configure your dataset path in
main.py
for testing - Run
python main.py --test
for testing
Model | AP_easy | AP_medium | AP_hard | #Params | Params Ratio | MFlops (320x320) | FPS(320x320) |
---|---|---|---|---|---|---|---|
SCRFD0.5(ICLR2022) | 0.892 | 0.885 | 0.819 | 631,410 | 8.32x | 184 | 284 |
Retinaface0.5(CVPR2020) | 0.907 | 0.883 | 0.742 | 426,608 | 5.62X | 245 | 235 |
YuNet_n(Original) | 0.892 | 0.883 | 0.811 | 75,856 | 1.00x | 149 | 456 |
YuNet_n(Ours) | 0.896 | 0.887 | 0.818 | 72,928 | 1.00x | 133 | 456 |
├── WIDERFace
├── images
├── train
├── 1111.jpg
├── 2222.jpg
├── val
├── 1111.jpg
├── 2222.jpg
├── labels
├── train
├── 1111.txt
├── 2222.txt
├── val
├── 1111.txt
├── 2222.txt