This repository provides tools for predicting wind direction and estimating uncertainty from SAR images acquired by Sentinel-1 (S1), RADARSAT Constellation Mission (RCM), and RADARSAT-2 (RS2) satellites. It utilizes a trained machine learning model built with PyTorch Lightning and Hydra-Zen
-
Prediction Pipeline: Load trained models and make predictions on new data.
-
Hydra-Zen Integration: Flexible configuration management.
-
Output Options: Generate predictions as a pandas DataFrame or an xarray Dataset.
-
Uncertainty Estimation: Predict both wind direction and associated uncertainty.
-
Georeferencing Support: Adjust predictions for geographical reference using dataset metadata.
git clone https://github.com/jean2262/l2winddir.git
cd l2winddir
Run predictions using the predict.py script:
python predict.py --model_path <path_to_model> --data_path <path_to_data> --eval <True/False>
-
Arguments:
-
--model_path
: Path to the trained model's directory. -
--data_path
: Path to the data file (NetCDF or xarray-compatible format). -
--eval
: If True, outputs a pandas DataFrame; otherwise, modifies and returns the input xarray Dataset.
-
python predict.py --model_path "/path/to/model" --data_path "/path/to/dataset.nc" --eval True
You can use the make_prediction function directly in Python scripts:
from predict import make_prediction
model_path = "/path/to/model"
data_path = "/path/to/dataset.nc"
result = make_prediction(model_path=model_path, data_path=data_path, eval=True)
print(result)
This project is licensed under the MIT License. See the LICENSE file for details.