Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for 'arraylike' objects as JSON arrays #317

Open
wants to merge 4 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions CHANGELOG.rst
Original file line number Diff line number Diff line change
@@ -1,3 +1,8 @@
Unreleased
==========

* Added support for Arraylike python objects as json arrays.

1.0.1
=====

Expand Down
13 changes: 11 additions & 2 deletions jmespath/functions.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import math
import json
from typing import Sequence
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this is deprecated and should be

Suggested change
from typing import Sequence
from collections.abc import Sequence

I think

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That's only available in Python 3.9+ but the project still declares support for 3.7 and 3.8

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it's available in older versions. only subscripting like Sequence[int] (which is not used) is only available in newer versions.


from jmespath import exceptions
from jmespath.compat import string_type as STRING_TYPE
Expand Down Expand Up @@ -35,6 +36,14 @@
}


def is_array(arg):
return hasattr(arg, "__array__") and arg.shape != ()


def is_arraylike(arg):
return (isinstance(arg, Sequence) and not isinstance(arg, (str, bytes))) or is_array(arg)


def signature(*arguments):
def _record_signature(func):
func.signature = arguments
Expand Down Expand Up @@ -180,7 +189,7 @@ def _func_not_null(self, *arguments):

@signature({'types': []})
def _func_to_array(self, arg):
if isinstance(arg, list):
if is_arraylike(arg):
return arg
else:
return [arg]
Expand Down Expand Up @@ -297,7 +306,7 @@ def _func_type(self, arg):
return "string"
elif isinstance(arg, bool):
return "boolean"
elif isinstance(arg, list):
elif is_arraylike(arg):
return "array"
elif isinstance(arg, dict):
return "object"
Expand Down
27 changes: 19 additions & 8 deletions jmespath/visitor.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,26 @@
import operator

from jmespath import functions
from jmespath.functions import is_array, is_arraylike
from jmespath.compat import string_type
from numbers import Number


def _arraylike_all(arg):
return arg.__array__().all() if is_array(arg) else arg


def _arraylike_to_list(arg):
return [_arraylike_to_list(i) for i in arg] if is_arraylike(arg) else arg


def _equals(x, y):
if _is_special_number_case(x, y):
return False
elif is_array(x) or is_array(y):
return _arraylike_all(x == y)
else:
return x == y
return _arraylike_to_list(x) == _arraylike_to_list(y)


def _is_special_number_case(x, y):
Expand Down Expand Up @@ -172,7 +183,7 @@ def visit_function_expression(self, node, value):

def visit_filter_projection(self, node, value):
base = self.visit(node['children'][0], value)
if not isinstance(base, list):
if not is_arraylike(base):
return None
comparator_node = node['children'][2]
collected = []
Expand All @@ -185,12 +196,12 @@ def visit_filter_projection(self, node, value):

def visit_flatten(self, node, value):
base = self.visit(node['children'][0], value)
if not isinstance(base, list):
# Can't flatten the object if it's not a list.
if not is_arraylike(base):
# Can't flatten the object if it's not arraylike.
return None
merged_list = []
for element in base:
if isinstance(element, list):
if is_arraylike(element):
merged_list.extend(element)
else:
merged_list.append(element)
Expand All @@ -202,7 +213,7 @@ def visit_identity(self, node, value):
def visit_index(self, node, value):
# Even though we can index strings, we don't
# want to support that.
if not isinstance(value, list):
if not is_arraylike(value):
return None
try:
return value[node['value']]
Expand All @@ -216,7 +227,7 @@ def visit_index_expression(self, node, value):
return result

def visit_slice(self, node, value):
if not isinstance(value, list):
if not is_arraylike(value):
return None
s = slice(*node['children'])
return value[s]
Expand Down Expand Up @@ -271,7 +282,7 @@ def visit_pipe(self, node, value):

def visit_projection(self, node, value):
base = self.visit(node['children'][0], value)
if not isinstance(base, list):
if not is_arraylike(base):
return None
collected = []
for element in base:
Expand Down
5 changes: 5 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,11 @@
wheel==0.38.1
parameterized==0.9.0
pytest==6.2.5
pytest-cov==3.0.0
hypothesis==3.1.0 ; python_version < '3.8'
hypothesis==5.5.4 ; python_version == '3.8'
hypothesis==5.35.4 ; python_version == '3.9'
astropy>=3.1
dask>=2.0.0
numpy>=1.15.0
xarray>=0.18.0
132 changes: 132 additions & 0 deletions tests/test_arraylike.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
import astropy.units as u
import dask.array as da
import numpy as np
import xarray as xr
from parameterized import parameterized, parameterized_class

import jmespath
import jmespath.functions
from tests import unittest


@parameterized_class(("name", "data"), [
("list", {
"value": {
"data": [[1,2,3],[4,5,6],[7,8,9]]
},
"same": {
"data": [[1,2,3],[4,5,6],[7,8,9]]
},
"other": {
"data": [[2,2,3],[4,5,6],[7,8,9]]
}
}),
("tuple", {
"value": {
"data": ((1,2,3),(4,5,6),(7,8,9))
},
"same": {
"data": ([1,2,3],[4,5,6],[7,8,9])
},
"other": {
"data": [[2,2,3],[4,5,6],[7,8,9]]
}
}),
("numpy", {
"value": {
"data": np.array([[1,2,3],[4,5,6],[7,8,9]])
},
"same": {
"data": (np.array([1,2,3]),np.array([4,5,6]),np.array([7,8,9]))
},
"other": {
"data": np.array([[2,2,3],[4,5,6],[7,8,9]])
}
}),
("dask", {
"value": {
"data": da.from_array([[1,2,3],[4,5,6],[7,8,9]])
},
"same": {
"data": (da.from_array([1,2,3]),da.from_array([4,5,6]),da.from_array([7,8,9]))
},
"other": {
"data": da.from_array([[2,2,3],[4,5,6],[7,8,9]])
}
}),
("xarray", {
"value": {
"data": xr.DataArray([[1,2,3],[4,5,6],[7,8,9]])
},
"same": {
"data": (xr.DataArray([1,2,3]),xr.DataArray([4,5,6]),xr.DataArray([7,8,9]))
},
"other": {
"data": xr.DataArray([[2,2,3],[4,5,6],[7,8,9]])
}
}),
("astropy", {
"value": {
"data": u.Quantity([[1,2,3],[4,5,6],[7,8,9]])
},
"same": {
"data": (u.Quantity([1,2,3]),u.Quantity([4,5,6]),u.Quantity([7,8,9]))
},
"other": {
"data": u.Quantity([[2,2,3],[4,5,6],[7,8,9]])
}
}),
])
class TestArrayNumeric(unittest.TestCase):
@parameterized.expand([
["self", "@", lambda data: data],
["get", "value.data", lambda data: data["value"]["data"]],
["slice_horizontal", "value.data[1][:]", lambda data: np.array(data["value"]["data"])[1,:]],
["slice_horizontal2", "value.data[:3:2][:]", lambda data: np.array(data["value"]["data"])[:3:2,:]],
["slice_vertical", "value.data[:][1]", lambda data: np.array(data["value"]["data"])[:,1]],
["slice_vertical2", "value.data[:][:3:2]", lambda data: np.array(data["value"]["data"])[:,:3:2]],
["flatten", "value.data[]", lambda data: np.array(data["value"]["data"]).flatten()],
["compare_self", "value.data == value.data", lambda _: True],
["compare_same", "value.data == same.data", lambda _: True],
["compare_other", "value.data == other.data", lambda _: False],
["compare_literal_scalar", "value.data[0][0] == `1`", lambda _: True],
["compare_literal_slice", "value.data[1][:] == `[4, 5, 6]`", lambda _: True],
["compare_literal", "value.data == `[[1,2,3],[4,5,6],[7,8,9]]`", lambda _: True],
["compare_flattened", "value.data[] == `[1,2,3,4,5,6,7,8,9]`", lambda _: True],
])
def test_search(self, test_name, query, expected):
result = jmespath.search(query, self.data)
np.testing.assert_array_equal(result, expected(self.data), test_name)


@parameterized_class(("name", "data"), [
("numpy", {
"value": {
"data": np.array([["test", "messages"],["in", "numpy"]])
},
"same": {
"data": np.array([["test", "messages"],["in", "numpy"]])
},
"other": {
"data": np.array([["test", "messages"],["other", "numpy"]])
}
})
])
class TestArrayStr(unittest.TestCase):
@parameterized.expand([
["self", "@", lambda data: data],
["get", "value.data", lambda data: data["value"]["data"]],
["slice_horizontal", "value.data[1][:]", lambda data: data["value"]["data"][1,:]],
["slice_vertical", "value.data[:][1]", lambda data: data["value"]["data"][:,1]],
["flatten", "value.data[]", lambda data: data["value"]["data"].flatten()],
["compare_self", "value.data == value.data", lambda _: True],
["compare_same", "value.data == same.data", lambda _: True],
["compare_other", "value.data == other.data", lambda _: False],
["compare_literal_scalar", "value.data[0][0] == 'test'", lambda _: True],
["compare_literal_slice", "value.data[1][:] == ['in', 'numpy']", lambda _: True],
["compare_literal", "value.data == [['test', 'messages'],['in', 'numpy']]", lambda _: True],
["compare_flattened", "value.data[] == ['test', 'messages', 'in', 'numpy']", lambda _: True],
])
def test_search(self, name, query, expected):
result = jmespath.search(query, self.data)
np.testing.assert_array_equal(result, expected(self.data), name)