This is an example of the CT images Kidney Tumor Segmentation
The following dependencies are needed:
- numpy >= 1.11.1
- SimpleITK >=1.0.1
- opencv-python >=3.3.0
- tensorflow-gpu ==1.8.0
- pandas >=0.20.1
- scikit-learn >= 0.17.1
- json >=2.0.9
1、Preprocess
- analyze the ct image,and get the slice thickness and window width and position:run the dataAnaly.py
- keep Kidney region range image:run the data2dprepare.py
- generate patch(128,128,32) kidney image and mask:run the data3dprepare.py
- save patch image and mask into csv file: run the utils.py,like file trainSegmentation.csv
- split trainSegmentation.csv into training set and test set:run subset.py
- generate tumor image and mask:run the tumordata2dprepare.py
- save tumor image and mask path into csv file: run the utils.py,like file traintumorSegmentation.csv
- split traintumorSegmentation.csv into training set and test set
2、Kidney Segmentation
- the VNet model
- train and predict in the script of vnet3d_train.py and vnet3d_predict.py
3、Kidney Tumor Segmentation
- the VNet2d model
- train and predict in the script of vnet2d_tumor_train.py and vnet2d_tumor_predict.py
1、Kidney Segmentation
- the train loss
- 200-209case dice value and result
2、Kidney Tumor Segmentation
- https://github.com/junqiangchen
- email: 1207173174@qq.com,yixuanwang@hust.edu.cn,1259389904@qq.com
- Contact: junqiangChen,yixuanWang(王艺璇),junMa(马骏)
- WeChat Number: 1207173174
- WeChat Public number: 最新医学影像技术