Discover trending content from top companies in AI and LLMs, along with insights from your preferred content creators on Twitter or YouTube — all customized for you.
Trend Collector gathers and analyzes content from leading company websites, influential Twitter figures, and popular YouTube channels. Stay ahead with real-time notifications via Slack or Telegram, making this a must-have tool for creators, marketers, and industry professionals.
- Save time by automating data collection and analysis
- Stay informed with updates from your preferred content sources
- Act fast with instant notifications about trends and opportunities
This project was inspired by trendFinder using FireCrawl
-
Data Collection 📥
- Scrapes news and updates directly from top company websites using Playwright.
- Monitors tweets from influential figures on Twitter/X.
- Tracks content from known YouTube channels.
- Allows users to add custom companies, creators, or channels for personalized monitoring.
-
AI Analysis 🤖
- Processes collected data with GPT-4o, Gemini or LLAMA3.3.
- Identify emerging trends and relevant topics.
- Craft tailored trend insights.
-
Notification System 📢
- Sends notifications via Slack or Telegram when significant trends are detected.
- 🤖 AI-powered trend detection
- 🔍 Website monitoring with Playwright
- 🎥 Monitor your loved YouTube channels
- 🔤 Follow influential Twitter
- 💬 Notifications on Slack or Telegram
- Runtime: Python 3.10+
- AI/LLM: Litellm for multi-llm access (OpenAI, Gemini, Groq,...)
- Data Sources:
- Website scraping with Playwright
- Twitter/X API
- YouTube Google Data API
- Notifications:
- Slack Webhooks
- Telegram Bot API
- Python (3.10 or higher)
- Virtual environment manager (e.g.,
venv
,conda
) - API keys for required services
Copy .env.example
to .env
and configure the following variables:
# Required: API key from an LLM providers
OPENAI_API_KEY=your_openai_api_key_here
GEMINI_API_KEY=your_gemini_api_key_here
GROQ_API_KEY=your_groq_api_key
# Required if monitoring Twitter/X trends
X_API_BEARER_TOKEN=your_twitter_api_bearer_token_here
# Required for YouTube channel monitoring
YOUTUBE_API_KEY=your_youtube_api_key_here
# Optional: Slack bot token and channel name for sending slack messages
SLACK_BOT_TOKEN=your_slack_token
SLACK_CHANNEL=your_slack_channel
# Optional: Telegram Bot API token and chat ID
TELEGRAM_BOT_TOKEN=your_telegram_bot_token_here
TELEGRAM_CHAT_ID=your_telegram_chat_id_here
-
Clone the repository:
git clone https://github.com/kaymen99/trendTracker.git cd trendTracker
-
Set up a virtual environment:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies:
pip install -r requirements.txt
-
Configure environment variables:
cp .env.example .env # Edit .env with your configuration
-
Run the application:
python main.py
trend-collector/
├── src/
│ ├── channels/ # Notification handlers via Slack or Telegram
│ ├── scrapers/ # Scraping and data collection logic
│ ├── constants.py # File containing all sources links
│ └── trend_tracker.py # Main class for content scraping and AI analysis
├── .env.example # Environment variables template
├── requirements.txt # Python dependencies
└── main.py # Application entry point
- Fork the repository.
- Create your feature branch (
git checkout -b feature/amazing-feature
). - Commit your changes (
git commit -m 'Add some amazing feature'
). - Push to the branch (
git push origin feature/amazing-feature
). - Open a Pull Request.
If you have any questions or suggestions, feel free to contact me at aymenMir1001@gmail.com
.