This repository supply a user-friendly interactive interface for YOLOv8 with vehicle Tracking and Counting capability. The interface is powered by Streamlit.
# create
python -m venv yolov8-mot-streamlit
# activate
source yolov8-mot-streamlit/bin/activate
# Streamlit dependencies
pip install streamlit
# YOLOv8 dependecies
pip install -e '.[dev]'
Model | size (pixels) |
mAPval 50-95 |
Speed CPU ONNX (ms) |
Speed A100 TensorRT (ms) |
params (M) |
FLOPs (B) |
---|---|---|---|---|---|---|
YOLOv8n | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
YOLOv8s | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
YOLOv8m | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
YOLOv8l | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
YOLOv8x | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
streamlit run app.py
Then will start the Streamlit server and open your web browser to the default Streamlit page automatically. For vehicle Counting, you can choose "Video" from "Select Source" combo box and use "test3.mp4" inside videos folder as an example.