-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9dfb58e
commit 22af43a
Showing
3 changed files
with
98 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
% sample taken from mathastext.dtx | ||
\DocumentMetadata | ||
{ | ||
lang=en-US, | ||
pdfversion=2.0, | ||
pdfstandard=ua-2, | ||
testphase={phase-III,math,title,table,firstaid} | ||
} | ||
\documentclass{article} | ||
|
||
\usepackage[T1]{fontenc} | ||
\usepackage[default]{droidserif} | ||
\usepackage[LGRgreek]{mathastext} | ||
\let\varepsilon\epsilon | ||
|
||
\title{mathastext tagging test - pdftex} | ||
|
||
\begin{document} | ||
|
||
Let $(X,Y)$ be two functions of a variable $a$. If they obey the differential | ||
system $(VI_{\nu,n})$: | ||
\begin{align*} | ||
a\frac{d}{da} X &= \nu | ||
X - (1 - X^2)\frac{2n a}{1 - a^2}\frac{aX+Y}{1+a XY} \\ | ||
a\frac{d}{da} Y &= -(\nu+1) Y | ||
+ (1 - Y^2)\frac{2n a}{1 - a^2}\frac{X+aY}{1+a XY} | ||
\end{align*} | ||
then the quantity $q = a \frac{aX+Y}{X+aY}$ | ||
satisfies as function of $b= a^2$ the $P_{VI}$ differential equation: | ||
\begin{equation*} | ||
\begin{split} | ||
\frac{d^2 q}{db^2} = \frac12\left\{\frac1q+\frac1{q-1} | ||
+\frac1{q-b}\right\}\left(\frac{dq}{db}\right)^2 - \left\{\frac1b+\frac1{b-1} | ||
+\frac1{q-b}\right\}\frac{dq}{db}\\+\frac{q(q-1)(q-b)}{b^2(b-1)^2}\left\{\alpha+\frac{\beta | ||
b}{q^2} + \frac{\gamma (b-1)}{(q-1)^2}+\frac{\delta | ||
b(b-1)}{(q-b)^2}\right\} | ||
\end{split} | ||
\end{equation*} | ||
with | ||
parameters | ||
$(\alpha,\beta,\gamma,\delta) = (\frac{(\nu+n)^2}2, | ||
\frac{-(\nu+n+1)^2}2, \frac{n^2}2, \frac{1 - n^2}2)$. | ||
|
||
Test of uppercase Greek in math: $\Alpha\Beta\Gamma\Delta\Xi\Omega$. | ||
|
||
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
% sample taken from mathastext.dtx | ||
\DocumentMetadata | ||
{ | ||
lang=en-US, | ||
pdfversion=2.0, | ||
pdfstandard=ua-2, | ||
testphase={phase-III,math,title,table,firstaid} | ||
} | ||
\documentclass{article} | ||
|
||
\usepackage[no-math]{fontspec} | ||
\setmainfont[Ligatures=TeX]{Libertinus Serif} | ||
\usepackage[defaultmathsizes,LGRgreek]{mathastext} | ||
\MTgreekfont{LibertinusSerif-TLF} | ||
\Mathastext | ||
|
||
\title{mathastext tagging test - luatex/xetex} | ||
|
||
\begin{document} | ||
|
||
Let $(X,Y)$ be two functions of a variable $a$. If they obey the differential | ||
system $(VI_{\nu,n})$: | ||
\begin{align*} | ||
a\frac{d}{da} X &= \nu | ||
X - (1 - X^2)\frac{2n a}{1 - a^2}\frac{aX+Y}{1+a XY} \\ | ||
a\frac{d}{da} Y &= -(\nu+1) Y | ||
+ (1 - Y^2)\frac{2n a}{1 - a^2}\frac{X+aY}{1+a XY} | ||
\end{align*} | ||
then the quantity $q = a \frac{aX+Y}{X+aY}$ | ||
satisfies as function of $b= a^2$ the $P_{VI}$ differential equation: | ||
\begin{equation*} | ||
\begin{split} | ||
\frac{d^2 q}{db^2} = \frac12\left\{\frac1q+\frac1{q-1} | ||
+\frac1{q-b}\right\}\left(\frac{dq}{db}\right)^2 - \left\{\frac1b+\frac1{b-1} | ||
+\frac1{q-b}\right\}\frac{dq}{db}\\+\frac{q(q-1)(q-b)}{b^2(b-1)^2}\left\{\alpha+\frac{\beta | ||
b}{q^2} + \frac{\gamma (b-1)}{(q-1)^2}+\frac{\delta | ||
b(b-1)}{(q-b)^2}\right\} | ||
\end{split} | ||
\end{equation*} | ||
with | ||
parameters | ||
$(\alpha,\beta,\gamma,\delta) = (\frac{(\nu+n)^2}2, | ||
\frac{-(\nu+n+1)^2}2, \frac{n^2}2, \frac{1 - n^2}2)$. | ||
|
||
Test of uppercase Greek in math: $\Alpha\Beta\Gamma\Delta\Xi\Omega$. | ||
|
||
\end{document} |