Skip to content

Commit

Permalink
add mathastext compat (#663)
Browse files Browse the repository at this point in the history
  • Loading branch information
mbertucci47 authored Aug 23, 2024
1 parent 9dfb58e commit 22af43a
Show file tree
Hide file tree
Showing 3 changed files with 98 additions and 4 deletions.
9 changes: 5 additions & 4 deletions _data/tagging-status.yml
Original file line number Diff line number Diff line change
Expand Up @@ -5943,13 +5943,14 @@

- name: mathastext
type: package
status: unknown
status: compatible
included-in: [arxiv001]
priority: 7
supported-through: [phase-III,math]
comments: "Use of math tagging currently requires support from external tools."
issues:
tests: false
tasks: needs tests
updated: 2024-07-18
tests: true
updated: 2024-08-23

- name: mathbbol
type: package
Expand Down
46 changes: 46 additions & 0 deletions tagging-status/testfiles/mathastext/mathastext-01.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
% sample taken from mathastext.dtx
\DocumentMetadata
{
lang=en-US,
pdfversion=2.0,
pdfstandard=ua-2,
testphase={phase-III,math,title,table,firstaid}
}
\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[default]{droidserif}
\usepackage[LGRgreek]{mathastext}
\let\varepsilon\epsilon

\title{mathastext tagging test - pdftex}

\begin{document}

Let $(X,Y)$ be two functions of a variable $a$. If they obey the differential
system $(VI_{\nu,n})$:
\begin{align*}
a\frac{d}{da} X &= \nu
X - (1 - X^2)\frac{2n a}{1 - a^2}\frac{aX+Y}{1+a XY} \\
a\frac{d}{da} Y &= -(\nu+1) Y
+ (1 - Y^2)\frac{2n a}{1 - a^2}\frac{X+aY}{1+a XY}
\end{align*}
then the quantity $q = a \frac{aX+Y}{X+aY}$
satisfies as function of $b= a^2$ the $P_{VI}$ differential equation:
\begin{equation*}
\begin{split}
\frac{d^2 q}{db^2} = \frac12\left\{\frac1q+\frac1{q-1}
+\frac1{q-b}\right\}\left(\frac{dq}{db}\right)^2 - \left\{\frac1b+\frac1{b-1}
+\frac1{q-b}\right\}\frac{dq}{db}\\+\frac{q(q-1)(q-b)}{b^2(b-1)^2}\left\{\alpha+\frac{\beta
b}{q^2} + \frac{\gamma (b-1)}{(q-1)^2}+\frac{\delta
b(b-1)}{(q-b)^2}\right\}
\end{split}
\end{equation*}
with
parameters
$(\alpha,\beta,\gamma,\delta) = (\frac{(\nu+n)^2}2,
\frac{-(\nu+n+1)^2}2, \frac{n^2}2, \frac{1 - n^2}2)$.

Test of uppercase Greek in math: $\Alpha\Beta\Gamma\Delta\Xi\Omega$.

\end{document}
47 changes: 47 additions & 0 deletions tagging-status/testfiles/mathastext/mathastext-02.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
% sample taken from mathastext.dtx
\DocumentMetadata
{
lang=en-US,
pdfversion=2.0,
pdfstandard=ua-2,
testphase={phase-III,math,title,table,firstaid}
}
\documentclass{article}

\usepackage[no-math]{fontspec}
\setmainfont[Ligatures=TeX]{Libertinus Serif}
\usepackage[defaultmathsizes,LGRgreek]{mathastext}
\MTgreekfont{LibertinusSerif-TLF}
\Mathastext

\title{mathastext tagging test - luatex/xetex}

\begin{document}

Let $(X,Y)$ be two functions of a variable $a$. If they obey the differential
system $(VI_{\nu,n})$:
\begin{align*}
a\frac{d}{da} X &= \nu
X - (1 - X^2)\frac{2n a}{1 - a^2}\frac{aX+Y}{1+a XY} \\
a\frac{d}{da} Y &= -(\nu+1) Y
+ (1 - Y^2)\frac{2n a}{1 - a^2}\frac{X+aY}{1+a XY}
\end{align*}
then the quantity $q = a \frac{aX+Y}{X+aY}$
satisfies as function of $b= a^2$ the $P_{VI}$ differential equation:
\begin{equation*}
\begin{split}
\frac{d^2 q}{db^2} = \frac12\left\{\frac1q+\frac1{q-1}
+\frac1{q-b}\right\}\left(\frac{dq}{db}\right)^2 - \left\{\frac1b+\frac1{b-1}
+\frac1{q-b}\right\}\frac{dq}{db}\\+\frac{q(q-1)(q-b)}{b^2(b-1)^2}\left\{\alpha+\frac{\beta
b}{q^2} + \frac{\gamma (b-1)}{(q-1)^2}+\frac{\delta
b(b-1)}{(q-b)^2}\right\}
\end{split}
\end{equation*}
with
parameters
$(\alpha,\beta,\gamma,\delta) = (\frac{(\nu+n)^2}2,
\frac{-(\nu+n+1)^2}2, \frac{n^2}2, \frac{1 - n^2}2)$.

Test of uppercase Greek in math: $\Alpha\Beta\Gamma\Delta\Xi\Omega$.

\end{document}

0 comments on commit 22af43a

Please sign in to comment.