Skip to content

Code accompanying the paper "Decentralized Federated Learning through Proxy Model Sharing"

Notifications You must be signed in to change notification settings

layer6ai-labs/ProxyFL

Repository files navigation

ProxyFL

Code accompanying the paper "Decentralized Federated Learning through Proxy Model Sharing" published in Nature Communications.

Authors: Shivam Kalra*, Junfeng Wen*, Jesse C. Cresswell*, Maksims Volkovs, Hamid R. Tizhoosh†

  • * Denotes equal contribution
  • † University of Waterloo / Vector Institute

Prerequisite

  • Python 3.9
conda create -n ProxyFL python=3.9
conda activate ProxyFL
  • PyTorch 1.9.0
conda install pytorch=1.9.0 torchvision=0.10.0 numpy=1.21.2 -c pytorch
  • mpi4py 3.1.2
conda install -c conda-forge mpi4py=3.1.2
  • opacus 0.14.0
pip install 'opacus==0.14.0'
  • matplotlib 3.4.3
conda install -c conda-forge matplotlib=3.4.3

Run experiment

Download data via

bash download_data.sh

Then run the script

bash run_exp.sh

Citation

If you find this code useful in your research, please cite the following paper:

@article{kalra2021proxyfl,
    author={Kalra, Shivam and Wen, Junfeng and Cresswell, Jesse C. and Volkovs, Maksims and Tizhoosh, H. R.},
    title={Decentralized federated learning through proxy model sharing},
    journal={Nature Communications},
    year={2023},
    month={May},
    day={22},
    volume={14},
    number={1},
    pages={2899},
    issn={2041-1723},
    doi={10.1038/s41467-023-38569-4}
}

About

Code accompanying the paper "Decentralized Federated Learning through Proxy Model Sharing"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published