Skip to content

A dynamic, multi-agentic, automatic AI based Research Engine. Built as a part of the 13th Inter IIT tech meet.

Notifications You must be signed in to change notification settings

manogyasingh/Erudite

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Erudite: Advanced Knowledge Graph Generator

🌟 Overview

Erudite is a cutting-edge knowledge graph generation system that combines advanced LLM capabilities with multi-source document processing and semantic search. It creates dynamic, interactive knowledge graphs while providing real-time insights through an agent-based research platform.

✨ Key Features

  • 🤖 Intelligent Agent System

    • Real-time streaming of agent thoughts and actions
    • Multi-source research capabilities
    • Dynamic knowledge synthesis
  • 🔍 Advanced Search & Retrieval

    • Semantic Scholar integration
    • News article analysis
    • YouTube content processing
    • Web search capabilities
  • 📊 Knowledge Graph Generation

    • Dynamic graph visualization
    • Interactive node exploration
    • Real-time graph expansion
    • Semantic relationship mapping
  • 💫 Modern UI/UX

    • Real-time streaming updates
    • Interactive visualizations
    • Responsive design
    • Dark/light theme support

🏗 Architecture

System Components

graph TD
    A[Frontend - Next.js] --> B[Backend - FastAPI]
    B --> C[LangChain Agents]
    C --> D[Claude-3-haiku LLM]
    C --> E[Data Sources]
    E --> F[Semantic Scholar]
    E --> G[News API]
    E --> H[YouTube]
    E --> I[Web Search]
    B --> J[Vector Store]
Loading

Tech Stack

  • Frontend

    • Next.js 14
    • React
    • Radix UI
    • TypeScript
    • React Flow (for graph visualization)
  • Backend

    • FastAPI
    • LangChain
    • Claude-3-haiku
    • uvicorn
    • Pathway LLM xpacks (vector store)
    • Pathway tables (metadata store)

🚀 Quick Start

Prerequisites

  • Docker
  • Node.js 18+ (for local development)
  • Python 3.10+ (for local development)

Running with Docker or Locally

  1. Backend
cd backend
cp .env.example .env  # Configure your environment variables
docker build -t erudite-backend .
docker run -p 8000:8000 --env-file .env erudite-backend

or, to run locally,

cd backend
pip install uv
uv venv --python 3.11
source .venv/bin/activate
uv pip install -r requirements.txt
python run_pathway_server.py [KEEP THIS RUNNING IN THE BACKGROUND]
python main.py
  1. Frontend
cd ui
cp env.example .env.local  # Configure your environment variables
docker build -t erudite-frontend .
docker run -p 3000:3000 erudite-frontend

or, to run locally,

cd ui
npm i --force
npm run dev [FOR DEVELOPMENT MODE]
npm run build && npm run start [FOR PRODUCTION MODE]

The application will be available at:

🏗 Project Structure

.
├── backend/               # FastAPI backend
│   ├── agents/           # Agent system
│   ├── pipelines/        # Data processing
│   └── services/         # External integrations
└── ui/                   # Next.js frontend
    ├── src/              # Source code
    │   ├── app/          # Next.js pages
    │   └── components/   # React components
    └── public/           # Static assets

🔧 Configuration

Backend Environment Variables (.env)

ANTHROPIC_API_KEY=your_key_here
SEMANTIC_SCHOLAR_API_KEY=your_key_here
NEWS_API_KEY=your_key_here
YOUTUBE_API_KEY=your_key_here
... and so on.

Frontend Environment Variables (.env.local)

BACKEND_URL=http://localhost:8000
GROQ_API_KEY=your_key_here

📚 Documentation

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

About

A dynamic, multi-agentic, automatic AI based Research Engine. Built as a part of the 13th Inter IIT tech meet.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published