Skip to content

margitantal68/sapiagent

Repository files navigation

sapiagent

SapiAgent: A Bot Based on DeepLearning to Generate Human-like MouseTrajectories

Dataset

Code

Folders

  • bezier_actions - content will be generated
  • equidistant actions - content will be generated
  • output_png
  • output_roc_data
  • sapimouse - SapiMouse dataset - Download from here: https://ms.sapientia.ro/~manyi/sapimouse/sapimouse.html
  • bezier_actions - content will be generated
  • sapimouse_actions - content will be generated
  • statistics - endpoints and lengths of mouse actions (trajectories)
  • TRAINED_MODELS
  • TRAINING_CURVES

Files

  • anomaly_detection_pyod.py - anomaly detection evaluations using detectors from PyOD package
  • autoencoder_models.py - CNN and RNN autoencoder models
  • autoencoder_training.py - training autoencoders conventionally (unsupervised) or using our approach (supervised)
  • create_bezier_actions.py - generate baseline and humanlike bezier actions
  • create_equidistant_actions.py - generate the contents of the equidistant_actions folder
  • create_sapimouse_actions - generate the contents of the sapimouse_actions folder
  • feature_extractions.py - extract meaningful features from actions (trajectories)
  • generate_autoencoder_actions.py - generate actions (trajectories) using the trained autoencoder (type of autoencoder: settings.py); actions saved in generated_actions folder
  • plots.py - plots
  • settings.py - different configurations for running an experiment
  • utils.py - utility functions

Steps

We used ML workspace which is a web-based IDE for machine learning and data science (preloaded with popular data science libraries). Only the pyclick package was added to this workspace.

  1. Download and unzip the SapiMouse dataset into sapimouse folder
  2. Segment SapiMouse dataset into actions: python create_sapimouse_actions.py
  3. Create Bezier baseline and humanlike datasets using the endpoints from SapMouse S1 (1 min session): python create_bezier_actions.py
  4. Create equidistant actions, that will be used for training the autoencoders (supervised): python create_equidistant_actions.py
  5. Train an autoencoder, then generate the corresponding actions. Use settings.py to set the desired architecture and training type.
    1. Set training parameters settings.py
      1. CNN_AE, conventional training: TRAINING_TYPE = 'unsupervised', KEY ='fcn'
      2. RNN_AE, conventional training: TRAINING_TYPE = 'unsupervised', KEY ='bidirectional'
      3. CNN_AE, our approach: TRAINING_TYPE = 'supervised', KEY ='fcn'
      4. RNN_AE, our approach: TRAINING_TYPE = 'supervised', KEY ='bidirectional'
    2. Train the autoencoder: python autoencoder_training.py
    3. Generate actions (trajectories): python generate_autoencoder_actions.py
  6. Evaluate the quality of the generated actions: python anomaly_detection_pyod.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages