The goal of openmpp
is to provide a programmatic interface to the
OpenM++ API directly from R to simplify creating scenarios, running
models, and gathering results for further processing.
You can install the development version of openmpp
from
GitHub with:
# install.packages("remotes")
remotes::install_github("mattwarkentin/openmpp")
If you do not have access to an existing OpenM++ server, you can
download and install OpenM++ locally and run a local server on your
workstation. The openmpp
package can then connect to this local server
instance.
For most users, the best way to install OpenM++ locally is to download the pre-compiled binaries. To install OpenM++, download and unzip the “Source code and binaries” appropriate for your operating system. The latest release of OpenM++ can be found here: https://github.com/openmpp/main/releases/latest. Pre-compiled binaries are available for Mac (Intel and Arm), Windows, and several common Linux distributions (Debian, Ubuntu, RedHat).
NOTE: Windows may allow you to view the contents of the zip directory without extracting, however, the files must be extracted for the installation to function properly.
Enter the OpenM++ directory using the File Explorer. Right-click anywhere inside the folder and select “Open in Terminal”.
In the Windows Terminal, enter the following command:
.\bin\oms.exe
This will start the process responsible for running the OpenM++ web
service (OMS). Note that the local host address (e.g.,
http://localhost:4040) will be printed in the console and is the
address used by the openmpp
R package to communicate with the API.
This local host address will be set as the OPENMPP_LOCAL_URL
. See the
Usage section for more details.
Open a new MacOS Terminal window (either by using Spotlight Search or by navigating to “Applications” and then “Utilities” in Finder).
After unzipping the downloaded directory in Finder, drag the folder into the terminal and press Enter. This will change your active directory to the OpenM++ folder.
Enter the following command into the terminal:
bin/oms
Similar to the Windows installation, the web service (OMS) will initiate and the local host address will be shared with the R package for API communication.
The openmpp
package contains many functions that provide access to
nearly every OpenM++ API endpoint. However, users of this package will
typically only use a smaller set of functions for most common tasks.
Each user is required to set their local or remote host address (i.e.,
URL) for the OpenM++ API in their global or project-specific .Renviron
file in order for the openmpp
package to authenticate and communicate
with the API on behalf of the user.
If you are working in an IDE (e.g., Positron, RStudio), you may consider
using the following function usethis::edit_r_environ()
to open your
.Renviron
file for editing. Note that you will need to restart your R
session after editing the file for the effect to take place.
For an API running locally, set the following environment variable in
your .Renviron
file:
OPENMPP_LOCAL_URL=http://localhost:XXXX
Where XXXX
is the four digits corresponding to your specific local
host address (typically 4040 is used). The local host address is printed
to the console when starting the OpenM++ web service in the terminal.
This package also provides the ability to remotely connect to OpenM++
using JWT tokens. For an API running remotely, set the following
environment variables in your .Renviron
file:
OPENMPP_REMOTE_URL=...
OPENMPP_REMOTE_USER=...
OPENMPP_REMOTE_PWD=...
If you aren’t sure of your remote URL or your username/password, you may contact your OpenM++ administrator to retrieve this information. Note that the URL, user name, and password should be kept confidential and not committed into version control (e.g., git).
Once the environment variables are set, users may register a local or remote API connection in their R scripts.
library(openmpp)
use_OpenMpp_local()
Or,
library(openmpp)
use_OpenMpp_remote()
see ?use_OpenMpp_local
or ?use_OpenMpp_remote
for more information.
-
Functions for accessing tables of models, worksets, or model runs
-
get_models()
-
get_worksets()
/get_scenarios()
-
get_model_runs()
/get_runs()
-
-
Functions for creating new worksets or scenarios
create_scenario()
/create_workset()
-
Functions for loading models, worksets, or model runs
-
load_model()
-
load_workset()
/load_scenario()
-
load_model_run()
/load_run()
-
load_model_runs()
/load_runs()
-
-
Functions for deleting worksets or model runs
-
delete_workset()
/delete_scenario()
-
delete_model_run()
/delete_run()
-
There are 4 main classes you will work with when using the openmpp
package: OpenMppModel
, OpenMppWorkset
, OpenMppModelRun
, and
OpenMppModelRunSet
. Each of these are R6
classes. R6
is an
encapsulated object-oriented programming (OOP) system for R. Use the
load_*()
set of functions to load a model, workset/scenario, model
run, or set of model runs into memory.
Instances of each of these 4 classes have methods (i.e., functions) and
fields (i.e., data) associated with them. You can access these functions
and data using the standard $
subset operator (e.g., obj$function()
or obj$data
).
Why use R6? We chose to use the R6 OOP as we believe it can simplify
the ability for the R package to communicate with OpenM++ to ensure that
all changes made to the microsimulation objects in the R session are
propagated and synchronized with the OpenM++ database. Encapsulated OOP
allows the internal state of the object (i.e., the connection to the
actual object in the OpenM++ database) to be accessed and modified
through well-defined and high-level methods, rather than directly
manipulating the data with low-level function calls. This approach
enforces data integrity, improves code readability, and simplifies
maintenance by abstracting away the implementation details of an object
and preventing unintended modifications to its state. More information
about R6
can be found
here.
Developing new microsimulation or agent-based models in OpenM++ is beyond the scope of this package. In-depth information on model development can be found here: https://github.com/openmpp/openmpp.github.io/wiki/Model-Development-Topics.
Next, we will work through a very simple example of creating a new scenario, extracting parameters to change, changing parameters, running the model, and extracting results. This example will use the RiskPaths model that comes with the OpenM++ software. RiskPaths is a simple, competing risk, case-based continuous time miscrosimulation model (More Information).
To run this example, you must have installed OpenM++, initiated the OpenM++ web service (OMS) in the shell, and configured the R package using the instructions above.
library(openmpp)
use_OpenMpp_local()
Let’s see what models are available:
get_models()
#> # A tibble: 8 × 7
#> ModelId Name Digest Type Version CreateDateTime DefaultLangCode
#> <int> <chr> <chr> <int> <chr> <chr> <chr>
#> 1 101 IDMM bd573… 1 2.0.0.0 2024-12-26 07… EN
#> 2 101 NewCaseBased be317… 0 1.0.0.0 2024-12-26 07… EN
#> 3 101 NewCaseBased_bili… 2a78a… 0 1.0.0.0 2024-12-26 07… EN
#> 4 101 NewTimeBased 49cec… 1 1.0.1.0 2024-12-26 07… EN
#> 5 101 OzProjGenX 1da1c… 0 0.22.0… 2024-12-26 07… EN
#> 6 101 OzProjX 2e697… 0 0.22.0… 2024-12-26 07… EN
#> 7 101 RiskPaths d976a… 0 3.0.0.0 2024-12-26 07… EN
#> 8 1 modelOne _2012… 0 1.0 2012-08-17 16… EN
We can now see what worksets and model runs exist for a given model.
get_worksets('RiskPaths')
#> # A tibble: 1 × 10
#> ModelName ModelDigest ModelVersion ModelCreateDateTime Name BaseRunDigest
#> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 RiskPaths d976aa2fb999f0… 3.0.0.0 2024-12-26 07:24:5… Defa… ""
#> # ℹ 4 more variables: IsReadonly <lgl>, UpdateDateTime <chr>,
#> # IsCleanBaseRun <lgl>, Txt <list>
get_runs('RiskPaths')
#> # A tibble: 1 × 15
#> ModelName ModelDigest ModelVersion ModelCreateDateTime Name SubCount
#> <chr> <chr> <chr> <chr> <chr> <int>
#> 1 RiskPaths d976aa2fb999f097468… 3.0.0.0 2024-12-26 07:24:5… Risk… 1
#> # ℹ 9 more variables: SubStarted <int>, SubCompleted <int>,
#> # CreateDateTime <chr>, Status <chr>, UpdateDateTime <chr>, RunId <int>,
#> # RunDigest <chr>, ValueDigest <chr>, RunStamp <chr>
Now we can load the RiskPaths
model to inspect.
rp <- load_model('RiskPaths')
rp
#> ── OpenM++ Model ───────────────────────────────────────────────────────────────
#> → ModelName: RiskPaths
#> → ModelVersion: 3.0.0.0
#> → ModelDigest: d976aa2fb999f097468bb2ea098c4daf
We will now load the Default
set of input parameters for the RiskPaths
model.
rp_default <- load_scenario('RiskPaths', 'Default')
rp_default
#> ── OpenM++ Workset (ReadOnly) ──────────────────────────────────────────────────
#> → ModelName: RiskPaths
#> → ModelVersion: 3.0.0.0
#> → ModelDigest: d976aa2fb999f097468bb2ea098c4daf
#> → WorksetName: Default
#> → BaseRunDigest:
Finally, we will load the base run for the RiskPaths model.
baserun_digest <- rp$ModelRuns$RunDigest[[1]]
rp_baserun <- load_run('RiskPaths', baserun_digest)
rp_baserun
#> ── OpenM++ ModelRun ────────────────────────────────────────────────────────────
#> → ModelName: RiskPaths
#> → ModelVersion: 3.0.0.0
#> → ModelDigest: d976aa2fb999f097468bb2ea098c4daf
#> → RunName: RiskPaths_Default
#> → RunDigest: c02d49bfda2e2ff05262ac0f0e30d830
We will create a new scenario based on the parameters from the
RiskPaths_Default
model run.
create_scenario('RiskPaths', 'MyNewScenario', baserun_digest)
We will load the new scenario, copy over the AgeBaselinePreg1
parameter from the base run.
my_scenario <- load_scenario('RiskPaths', 'MyNewScenario')
Let’s reduce the fertility rate by 10% across all age groups…
my_scenario$copy_params('AgeBaselinePreg1')
library(dplyr)
current_rates <- my_scenario$Parameters$AgeBaselinePreg1
reduced_rates <-
current_rates |>
mutate(across(-sub_id, \(x) x * 0.9))
my_scenario$Parameters$AgeBaselinePreg1 <- reduced_rates
We will now run the model and give it the name 'ExampleRun'
. We use
the wait = TRUE
flag to make sure we want for the model run to finish
before returning to our R session. We use progress = FALSE
to avoid
printing progress bars in this document. Note that model runs may take a
long time when the number of simulation cases is large.
my_scenario$ReadOnly <- TRUE
my_scenario$run('ExampleRun', wait = TRUE, progress = FALSE)
Note that we can use the opts
argument and the opts_run()
function
to configure our run. By default, models are run with 5,000 simulation
cases and 12 SubValues. This allows for quick model runs and faster
iteration, but users will want to increase the number of simulation
cases when performing a full model run.
Now that our model run is complete, let’s load it into memory.
example_run <- load_run('RiskPaths', 'ExampleRun')
example_run
#> ── OpenM++ ModelRun ────────────────────────────────────────────────────────────
#> → ModelName: RiskPaths
#> → ModelVersion: 3.0.0.0
#> → ModelDigest: d976aa2fb999f097468bb2ea098c4daf
#> → RunName: ExampleRun
#> → RunDigest: 9438650b653768c4befaca9d6c36b413
We can now extract an output table from the Tables
field in the model
run object (example_run$Tables
).
example_run$Tables$T06_BirthsByUnion
#> # A tibble: 7 × 3
#> expr_name Dim0 expr_value
#> <chr> <chr> <dbl>
#> 1 Expr0 US_NEVER_IN_UNION 1205.
#> 2 Expr0 US_FIRST_UNION_PERIOD1 2944.
#> 3 Expr0 US_FIRST_UNION_PERIOD2 333.
#> 4 Expr0 US_AFTER_FIRST_UNION 10.0
#> 5 Expr0 US_SECOND_UNION 72.0
#> 6 Expr0 US_AFTER_SECOND_UNION 1.00
#> 7 Expr0 all 4565.
Great, we have created a new scenario, modified some parameters, ran the model, and extracted output tables. In this last step, we will load multiple model runs into memory to compare them.
rp_runs <- load_runs('RiskPaths', rp$ModelRuns$RunDigest)
rp_runs
#> ── OpenM++ ModelRunSet ─────────────────────────────────────────────────────────
#> → ModelName: RiskPaths
#> → ModelVersion: 3.0.0.0
#> → ModelDigest: d976aa2fb999f097468bb2ea098c4daf
#> → RunNames: [RiskPaths_Default, ExampleRun]
#> → RunDigests: [c02d49bfda2e2ff05262ac0f0e30d830, 9438650b653768c4befaca9d6c36b413]
We will extract a new table from both models. Note that an extra column,
RunName
is added to indicate which model run the output table data
corresponds to.
births <- rp_runs$Tables$T06_BirthsByUnion
births
#> # A tibble: 14 × 4
#> RunName expr_name Dim0 expr_value
#> <chr> <chr> <chr> <dbl>
#> 1 RiskPaths_Default Expr0 US_NEVER_IN_UNION 1285
#> 2 RiskPaths_Default Expr0 US_FIRST_UNION_PERIOD1 2986
#> 3 RiskPaths_Default Expr0 US_FIRST_UNION_PERIOD2 293
#> 4 RiskPaths_Default Expr0 US_AFTER_FIRST_UNION 11
#> 5 RiskPaths_Default Expr0 US_SECOND_UNION 57
#> 6 RiskPaths_Default Expr0 US_AFTER_SECOND_UNION 1
#> 7 RiskPaths_Default Expr0 all 4633
#> 8 ExampleRun Expr0 US_NEVER_IN_UNION 1205.
#> 9 ExampleRun Expr0 US_FIRST_UNION_PERIOD1 2944.
#> 10 ExampleRun Expr0 US_FIRST_UNION_PERIOD2 333.
#> 11 ExampleRun Expr0 US_AFTER_FIRST_UNION 10.0
#> 12 ExampleRun Expr0 US_SECOND_UNION 72.0
#> 13 ExampleRun Expr0 US_AFTER_SECOND_UNION 1.00
#> 14 ExampleRun Expr0 all 4565.
We can even plot this using ggplot2
! Note that the number of
simulation cases for ExampleRun
is low so the results are not to
be trusted! This is only for demonstration purposes.
library(ggplot2)
births |>
ggplot(aes(Dim0, expr_value, fill = RunName)) +
geom_col(position = position_dodge()) +
labs(x = NULL, y = 'Number of births by union') +
coord_flip() +
theme_minimal() +
theme(legend.position = 'bottom')
When we are sure we no longer need a scenario or model run, we can use
delete_scenario()
or delete_run()
to clean things up!
Contributions to this package are welcome. The preferred method of contribution is through a GitHub pull request. Before contributing, please file an issue to discuss the idea with the project team. More details on contributing can be found in the CONTRIBUTING document.
Please note that the openmpp
project is released with a Contributor
Code of
Conduct.
By contributing to this project, you agree to abide by its terms.