Skip to content

merak0514/mit6.824

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

mit 6.824

实验代码

哪些代码是我写的?

src/mr/ 下面的三个文件,分别是server、worker和rpc通信的部分。

lab1

lab 1官方网站

我是怎么做的?(踩坑)

  1. 建议仔细阅读官方提供的sequential情况下的参考代码:mrsequential.go
  2. 最开始先按照网站上的提示,从写一个mapreduce的处理开始;先完成处理一个文件。
  3. 接着发现这样做是没有前途的,Coordinator(上位机)和worker(下位机)之间没有建立强关联;即上位机其实不知道现在都有哪些下位机available,也不知道分配过去的任务执行的怎么样了。
  4. 开始自顶向下设计,先做了一个Register函数,让下位机去主动注册,并接受分配的id;同时上位机储存一张数据表,记录都有哪些下位机来注册的,以及下位机的状态。
  5. 完成Sanity check(打乒乓):下位机过一段时间就ping一下上位机,告知自己存活;超过一段时间没收到下位机的信号,上位机就将下位机标注为died。
  6. 完成ArrangeTask函数,试图自顶向下,先设计任务的分配模板,而缺省具体的reduce分配方式。
  7. 设计判断Map阶段是否结束的方法;满足 所有Map文件都被分配出去以及 所有分配出去的Map文件都被告知执行完成即为Map阶段完成;前者使用计数器实现,后者使用WatiGroup实现。
    • 注意区分worker id和task id,一个worker可能依次执行多个map task。
  8. 死亡处理:有些线程可能会在中途死亡,那它们之前carry的任务要回到任务列表。我建了一个队列来作为任务列表;建了一张worker和任务的对照表,如果worker死了就把它的任务返回队列。
    • 这里有个小坑是关于waitGroup的处理:每次分配完任务waitGroup中的计数器都会+1,要记得在监测到worker死亡并将其对应任务返回队列之时将计数器-1。
  9. Reduce阶段设计:和Map阶段设计类似。

问题

  • 为什么官方的设计构造中worker没有采用面向对象的方法?而是拿了一个函数?

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •