forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 345
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'origin/main' into split_qkv_overlap_comm
- Loading branch information
Showing
10 changed files
with
50,600 additions
and
116 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
360 changes: 360 additions & 0 deletions
360
examples_deepspeed/sequence_parallel/ds_pretrain_gpt_6.7B_fpdt_32k.sh
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,360 @@ | ||
#!/bin/bash | ||
dir=`pwd` | ||
############################################################################### | ||
### Main configs | ||
## GPT-3 models use 2K sequence length/context window | ||
seq_len=262144 # need to be divisible by sp size * sp size * num chunks = 4 * 4 * 32 = 128 | ||
|
||
## The "GPT-3 XXX" below are configs from GPT-3 paper | ||
## https://arxiv.org/abs/2005.14165, choose based on | ||
## your desired model size or build your own configs | ||
|
||
## init_std is standard deviation for weight initialization. Usually larger | ||
## model needs lower std. We used a heuristic equation of sqrt(1/3/hidden_size) | ||
## from the MT-NLG 530B work (https://arxiv.org/pdf/2201.11990.pdf) | ||
|
||
## We changed min_lr to a lower number (1.0e-6), which we found is able to | ||
## provide better zero-shot eval results. | ||
|
||
## GPT-3 Small 125M | ||
# model_size=0.125 | ||
# num_layers=12 | ||
# hidden_size=768 | ||
# num_attn_heads=12 | ||
# global_batch_size=256 | ||
# lr=6.0e-4 | ||
# min_lr=1.0e-6 | ||
# init_std=0.02 | ||
|
||
## GPT-3 Medium 350M | ||
# model_size=0.35 | ||
# num_layers=24 | ||
# hidden_size=1024 | ||
# num_attn_heads=16 | ||
# global_batch_size=256 | ||
# lr=3.0e-4 | ||
# min_lr=1.0e-6 | ||
# init_std=0.018 | ||
|
||
## GPT-3 Large 760M | ||
# model_size=0.76 | ||
# num_layers=24 | ||
# hidden_size=1536 | ||
# num_attn_heads=16 | ||
# global_batch_size=256 | ||
# lr=2.5e-4 | ||
# min_lr=1.0e-6 | ||
# init_std=0.015 | ||
|
||
## GPT-3 XL 1.3B | ||
# model_size=1.3 | ||
# num_layers=24 | ||
# hidden_size=2048 | ||
# num_attn_heads=16 | ||
# global_batch_size=32 | ||
# lr=2.0e-4 | ||
# min_lr=1.0e-6 | ||
# init_std=0.013 | ||
|
||
## GPT-3 2.7B | ||
# model_size=2.7 | ||
# num_layers=32 | ||
# hidden_size=2560 | ||
# num_attn_heads=32 | ||
# global_batch_size=512 | ||
# lr=1.6e-4 | ||
# min_lr=1.0e-6 | ||
# init_std=0.011 | ||
|
||
## GPT-3 6.7B | ||
model_size=6.7 | ||
num_layers=32 | ||
hidden_size=4096 | ||
num_attn_heads=32 | ||
global_batch_size=1024 | ||
lr=1.2e-4 | ||
min_lr=1.0e-6 | ||
init_std=0.009 | ||
|
||
## GPT-3 13B | ||
# model_size=13 | ||
# num_layers=40 | ||
# hidden_size=5120 | ||
# num_attn_heads=40 | ||
# global_batch_size=1024 | ||
# lr=1.0e-4 | ||
# min_lr=1.0e-6 | ||
# init_std=0.008 | ||
|
||
# GPT-3 30B | ||
# model_size=30 | ||
# num_layers=64 | ||
# hidden_size=6144 | ||
# num_attn_heads=64 | ||
# global_batch_size=2 | ||
# lr=1.0e-4 | ||
# min_lr=1.0e-6 | ||
# init_std=0.008 | ||
|
||
## GPT-3 175B | ||
# model_size=175 | ||
# num_layers=96 | ||
# hidden_size=12288 | ||
# num_attn_heads=96 | ||
# global_batch_size=1536 | ||
# lr=0.6e-4 | ||
# min_lr=1.0e-6 | ||
# init_std=0.005 | ||
############################################################################### | ||
### Training duration configs | ||
## The main termination condition, original GPT-3 paper trains for 300B tokens. | ||
train_tokens_in_billion=300 | ||
train_tokens=$((${train_tokens_in_billion} * 1000000000)) | ||
|
||
## train_samples is another termination condition and also affect the number of | ||
## data samples to be indexed. Since we want to reach the train_tokens | ||
## above, and data efficiency techniques may change num tokens in some samples, | ||
## so we just set this config large enough to make sure we have enough | ||
## processed data and don't terminate by train_samples. | ||
train_samples=$(( 300 * 1000000000 * 2 / ${seq_len} )) | ||
|
||
## Another wall-clock time termination condition in minutes. Set it large | ||
## enough to avoid undesired early termination. | ||
exit_duration=30000000 | ||
############################################################################### | ||
### lr configs | ||
## lr warmup and decay duration. | ||
## Original GPT-3 paper uses 375M warmup tokens and 260B cosine decay tokens. | ||
## Here we increase the warmup tokens to 3B since when batch size warmup is not | ||
## used, there are more tokens per step. Thus we need to increase warmup tokens | ||
## to make sure there are enough warmup steps, which is important for training | ||
## stability. | ||
lr_warmup_tokens_in_million=3000 | ||
lr_warmup_tokens=$((${lr_warmup_tokens_in_million} * 1000000)) | ||
## Here we changed the LR decay tokens to align with total train tokens, since | ||
## related works (e.g., https://arxiv.org/abs/2203.15556) find that setting the | ||
## learning rate schedule to match the number of training tokens results in the | ||
## best final model quality | ||
lr_decay_tokens_in_billion=${train_tokens_in_billion} | ||
lr_decay_tokens=$((${lr_decay_tokens_in_billion} * 1000000000)) | ||
lr_decay_style="cosine" | ||
############################################################################### | ||
### Parallelism configs | ||
## Model parallelism, 1 is no MP | ||
## Currently we only support MP=1 with SP>1 | ||
mp_size=1 | ||
|
||
## Sequence parallelism, 1 is no SP | ||
sp_size=4 | ||
|
||
## Pipeline parallelism. To disable PP, set pp_size to 1 and no_pp to true. | ||
## Note that currently both curriculum learning and random-LTD are NOT | ||
## compatible with pipeline parallelism. | ||
pp_size=1 | ||
no_pp="true" | ||
|
||
## ZeRO-based data parallelism, stage=0 will disable ZeRO | ||
zero_stage=3 | ||
|
||
## Total number of GPUs. ds_ssh is from DeepSpeed library. | ||
num_gpus=$(($(ds_ssh nvidia-smi --query-gpu=name --format=csv,noheader | wc -l)-2)) | ||
num_gpus_pernode=$(nvidia-smi --query-gpu=name --format=csv,noheader | wc -l) | ||
num_node=$(( ${num_gpus} / ${num_gpus_pernode} )) | ||
|
||
## Data parallel size. | ||
dp_size=$(( ${num_gpus} / ${pp_size} / ${mp_size} / ${sp_size} )) | ||
|
||
## Micro batch size per GPU | ||
## Make sure that batch_size <= global_batch_size*pp_size*mp_size/num_gpus | ||
## Reduce it manually if GPU OOM | ||
# batch_size=$(( ${global_batch_size} / ${dp_size} )) | ||
batch_size=2 | ||
|
||
############################################################################### | ||
### Misc configs | ||
log_interval=10 | ||
eval_iters=10 | ||
eval_interval=100 | ||
# num_save controls how frequent to save checkpoint. num_save=20 means that a | ||
# checkpoint will be saved every 5% of training. For longer training you would | ||
# want larger num_save to save more frequently, and vice versa. | ||
num_save=100 | ||
estimated_train_iter=$((${train_tokens} / ${seq_len} / ${global_batch_size})) | ||
# save_interval=$((${estimated_train_iter} / ${num_save})) | ||
save_interval=100 | ||
|
||
## Activation checkpointing saves GPU memory, but reduces training speed | ||
activation_checkpoint="true" | ||
# activation_checkpoint="false" | ||
|
||
## Whether or not log optimizer states (norms, max abs values) to tensorboard. | ||
## This is not required for training and might save GPU memory when turned off. | ||
log_optimizer_state="false" | ||
############################################################################### | ||
### Output and data configs | ||
current_time=$(date "+%Y.%m.%d_%H.%M.%S") | ||
host="${HOSTNAME}" | ||
seed=1234 | ||
num_workers=0 | ||
|
||
data_path="BookCorpusDataset_text_document" | ||
if [ ! -f "BookCorpusDataset_text_document.bin" ]; then | ||
wget https://the-eye.eu/public/AI/pile_neox/data/BookCorpusDataset_text_document.bin | ||
fi | ||
if [ ! -f "BookCorpusDataset_text_document.idx" ]; then | ||
wget https://the-eye.eu/public/AI/pile_neox/data/BookCorpusDataset_text_document.idx | ||
fi | ||
|
||
vocab_path="gpt2-vocab.json" | ||
if [ ! -f "$vocab_path" ]; then | ||
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json | ||
fi | ||
merge_path="gpt2-merges.txt" | ||
if [ ! -f "$merge_path" ]; then | ||
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt | ||
fi | ||
|
||
prescale_grad="true" | ||
jobname="gpt_${model_size}B_tok${train_tokens_in_billion}B" | ||
jobname="${jobname}_lr${lr}_min${min_lr}_w${lr_warmup_tokens_in_million}M_d${lr_decay_tokens_in_billion}B_${lr_decay_style}" | ||
jobname="${jobname}_gbs${global_batch_size}_mbs${batch_size}_g${num_gpus}" | ||
if [[ $zero_stage -gt 0 ]]; then | ||
jobname="${jobname}_z${zero_stage}" | ||
prescale_grad="false" | ||
fi | ||
if [[ $sp_size -gt 1 ]]; then | ||
jobname="${jobname}_sp${sp_size}" | ||
fi | ||
if [[ $mp_size -gt 1 ]]; then | ||
jobname="${jobname}_mp${mp_size}" | ||
fi | ||
if [ "${no_pp}" = "false" ]; then | ||
jobname="${jobname}_pp${pp_size}" | ||
fi | ||
jobname="${jobname}_seed${seed}_rebase" | ||
|
||
username=$(whoami) | ||
output_home="output" | ||
log_path="${output_home}/log/" | ||
checkpoint_path="${output_home}/checkpoint/${jobname}" | ||
tensorboard_dir="${output_home}/tensorboard/" | ||
tensorboard_path="${tensorboard_dir}${jobname}_${host}_${current_time}" | ||
mkdir -p ${log_path} | ||
mkdir -p ${checkpoint_path} | ||
mkdir -p ${tensorboard_path} | ||
############################################################################### | ||
data_options=" \ | ||
--vocab-file ${vocab_path} \ | ||
--merge-file ${merge_path} \ | ||
--data-path ${data_path} \ | ||
--data-impl mmap" | ||
|
||
## If CL is used, make sure to set "--split" the same as what you used during | ||
## offline data analysis&indexing. | ||
megatron_options=" \ | ||
--override-opt_param-scheduler \ | ||
--adam-beta1 0.9 \ | ||
--adam-beta2 0.95 \ | ||
--tensor-model-parallel-size 1 \ | ||
--ds-sequence-parallel-fpdt \ | ||
--ds-sequence-parallel-fpdt-chunk-size 65536 \ | ||
--ds-sequence-parallel-fpdt-offloading \ | ||
--ds-sequence-parallel-size ${sp_size} \ | ||
--init-method-std ${init_std} \ | ||
--lr-decay-tokens ${lr_decay_tokens} \ | ||
--lr-warmup-tokens ${lr_warmup_tokens} \ | ||
--micro-batch-size ${batch_size} \ | ||
--exit-duration-in-mins ${exit_duration} \ | ||
--global-batch-size ${global_batch_size} \ | ||
--num-layers ${num_layers} \ | ||
--hidden-size ${hidden_size} \ | ||
--num-attention-heads ${num_attn_heads} \ | ||
--seq-length ${seq_len} \ | ||
--max-position-embeddings ${seq_len} \ | ||
--train-tokens ${train_tokens} \ | ||
--train-samples ${train_samples} \ | ||
--lr ${lr} \ | ||
--min-lr ${min_lr} \ | ||
--lr-decay-style ${lr_decay_style} \ | ||
--split 949,50,1 \ | ||
--log-interval ${log_interval} \ | ||
--eval-interval ${eval_interval} \ | ||
--eval-iters ${eval_iters} \ | ||
--save-interval ${save_interval} \ | ||
--weight-decay 0.1 \ | ||
--attention-dropout 0.0 \ | ||
--hidden-dropout 0.0 \ | ||
--clip-grad 1.0 \ | ||
--hysteresis 2 \ | ||
--num-workers ${num_workers} \ | ||
--fp16 \ | ||
--seed ${seed} \ | ||
--load ${checkpoint_path} \ | ||
--save ${checkpoint_path} \ | ||
--no-async-tensor-model-parallel-allreduce \ | ||
--use-flash-attn-v2 \ | ||
--tensorboard-queue-size 1 \ | ||
--use-rotary-position-embeddings \ | ||
--rotary-percent 0.25 \ | ||
--rotary-position-embeddings-theta 100000000 \ | ||
--log-timers-to-tensorboard \ | ||
--log-batch-size-to-tensorboard \ | ||
--log-validation-ppl-to-tensorboard \ | ||
--tensorboard-dir ${tensorboard_path}" | ||
|
||
if [ "${activation_checkpoint}" = "true" ]; then | ||
megatron_options="${megatron_options} \ | ||
--checkpoint-activations" | ||
fi | ||
|
||
if [ "${log_optimizer_state}" = "true" ]; then | ||
megatron_options="${megatron_options} \ | ||
--log-optimizer-states-to-tensorboard" | ||
fi | ||
|
||
config_json="ds_config_gbs${global_batch_size}_mbs${batch_size}_log${log_interval}_zero${zero_stage}.json" | ||
template_json="ds_config_gpt_TEMPLATE.json" | ||
sed "s/GBSIZE/${global_batch_size}/" ${template_json} \ | ||
| sed "s/MBSIZE/${batch_size}/" \ | ||
| sed "s/LOG_INTERVAL/${log_interval}/" \ | ||
| sed "s/ZERO_STAGE/${zero_stage}/" \ | ||
| sed "s/PRESCALE_GRAD/${prescale_grad}/" \ | ||
> ${config_json} | ||
|
||
deepspeed_options=" \ | ||
--deepspeed \ | ||
--deepspeed_config ${config_json} \ | ||
--zero-stage ${zero_stage} \ | ||
--pipeline-model-parallel-size ${pp_size}" | ||
|
||
if [[ "${no_pp}" = "true" ]]; then | ||
deepspeed_options="${deepspeed_options} \ | ||
--no-pipeline-parallel" | ||
fi | ||
|
||
if [ "${activation_checkpoint}" = "true" ]; then | ||
deepspeed_options="${deepspeed_options} \ | ||
--deepspeed-activation-checkpointing \ | ||
--checkpoint-in-cpu" | ||
fi | ||
|
||
## When saving checkpoint to a storage with cache, their could be consistency | ||
## issue of the pointer to latest checkpoint. Here we find the correct pointer | ||
## and broadcast it to all nodes. | ||
iteration_file="$checkpoint_path/latest_checkpointed_iteration.txt" | ||
iteration_file_2="$checkpoint_path/latest" | ||
iteration=0 | ||
for (( node = 0; node <= num_node-1; node++ )) | ||
do | ||
if $(ssh -q worker-"$node" "test -f \"$iteration_file\""); then | ||
local_iteration=$(ssh -q worker-"$node" cat $iteration_file) | ||
iteration=$(( ${local_iteration} > ${iteration} ? ${local_iteration} : ${iteration} )) | ||
fi | ||
done | ||
if [[ $iteration -gt 0 ]]; then | ||
iteration_2="global_step${iteration}" | ||
ds_ssh "echo $iteration > $iteration_file" | ||
ds_ssh "echo $iteration_2 > $iteration_file_2" | ||
fi | ||
|
||
deepspeed ${dir}/../../pretrain_gpt.py ${megatron_options} ${data_options} ${deepspeed_options} 2>&1 | tee ${log_path}/${jobname}_${host}_${current_time}.log |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.