Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/main' into split_qkv_overlap_comm
Browse files Browse the repository at this point in the history
  • Loading branch information
inkcherry committed Dec 6, 2024
2 parents 8516213 + 676a482 commit ec194e7
Show file tree
Hide file tree
Showing 10 changed files with 50,600 additions and 116 deletions.
50,001 changes: 50,001 additions & 0 deletions examples_deepspeed/rebase/gpt2-merges.txt

Large diffs are not rendered by default.

1 change: 1 addition & 0 deletions examples_deepspeed/rebase/gpt2-vocab.json

Large diffs are not rendered by default.

360 changes: 360 additions & 0 deletions examples_deepspeed/sequence_parallel/ds_pretrain_gpt_6.7B_fpdt_32k.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,360 @@
#!/bin/bash
dir=`pwd`
###############################################################################
### Main configs
## GPT-3 models use 2K sequence length/context window
seq_len=262144 # need to be divisible by sp size * sp size * num chunks = 4 * 4 * 32 = 128

## The "GPT-3 XXX" below are configs from GPT-3 paper
## https://arxiv.org/abs/2005.14165, choose based on
## your desired model size or build your own configs

## init_std is standard deviation for weight initialization. Usually larger
## model needs lower std. We used a heuristic equation of sqrt(1/3/hidden_size)
## from the MT-NLG 530B work (https://arxiv.org/pdf/2201.11990.pdf)

## We changed min_lr to a lower number (1.0e-6), which we found is able to
## provide better zero-shot eval results.

## GPT-3 Small 125M
# model_size=0.125
# num_layers=12
# hidden_size=768
# num_attn_heads=12
# global_batch_size=256
# lr=6.0e-4
# min_lr=1.0e-6
# init_std=0.02

## GPT-3 Medium 350M
# model_size=0.35
# num_layers=24
# hidden_size=1024
# num_attn_heads=16
# global_batch_size=256
# lr=3.0e-4
# min_lr=1.0e-6
# init_std=0.018

## GPT-3 Large 760M
# model_size=0.76
# num_layers=24
# hidden_size=1536
# num_attn_heads=16
# global_batch_size=256
# lr=2.5e-4
# min_lr=1.0e-6
# init_std=0.015

## GPT-3 XL 1.3B
# model_size=1.3
# num_layers=24
# hidden_size=2048
# num_attn_heads=16
# global_batch_size=32
# lr=2.0e-4
# min_lr=1.0e-6
# init_std=0.013

## GPT-3 2.7B
# model_size=2.7
# num_layers=32
# hidden_size=2560
# num_attn_heads=32
# global_batch_size=512
# lr=1.6e-4
# min_lr=1.0e-6
# init_std=0.011

## GPT-3 6.7B
model_size=6.7
num_layers=32
hidden_size=4096
num_attn_heads=32
global_batch_size=1024
lr=1.2e-4
min_lr=1.0e-6
init_std=0.009

## GPT-3 13B
# model_size=13
# num_layers=40
# hidden_size=5120
# num_attn_heads=40
# global_batch_size=1024
# lr=1.0e-4
# min_lr=1.0e-6
# init_std=0.008

# GPT-3 30B
# model_size=30
# num_layers=64
# hidden_size=6144
# num_attn_heads=64
# global_batch_size=2
# lr=1.0e-4
# min_lr=1.0e-6
# init_std=0.008

## GPT-3 175B
# model_size=175
# num_layers=96
# hidden_size=12288
# num_attn_heads=96
# global_batch_size=1536
# lr=0.6e-4
# min_lr=1.0e-6
# init_std=0.005
###############################################################################
### Training duration configs
## The main termination condition, original GPT-3 paper trains for 300B tokens.
train_tokens_in_billion=300
train_tokens=$((${train_tokens_in_billion} * 1000000000))

## train_samples is another termination condition and also affect the number of
## data samples to be indexed. Since we want to reach the train_tokens
## above, and data efficiency techniques may change num tokens in some samples,
## so we just set this config large enough to make sure we have enough
## processed data and don't terminate by train_samples.
train_samples=$(( 300 * 1000000000 * 2 / ${seq_len} ))

## Another wall-clock time termination condition in minutes. Set it large
## enough to avoid undesired early termination.
exit_duration=30000000
###############################################################################
### lr configs
## lr warmup and decay duration.
## Original GPT-3 paper uses 375M warmup tokens and 260B cosine decay tokens.
## Here we increase the warmup tokens to 3B since when batch size warmup is not
## used, there are more tokens per step. Thus we need to increase warmup tokens
## to make sure there are enough warmup steps, which is important for training
## stability.
lr_warmup_tokens_in_million=3000
lr_warmup_tokens=$((${lr_warmup_tokens_in_million} * 1000000))
## Here we changed the LR decay tokens to align with total train tokens, since
## related works (e.g., https://arxiv.org/abs/2203.15556) find that setting the
## learning rate schedule to match the number of training tokens results in the
## best final model quality
lr_decay_tokens_in_billion=${train_tokens_in_billion}
lr_decay_tokens=$((${lr_decay_tokens_in_billion} * 1000000000))
lr_decay_style="cosine"
###############################################################################
### Parallelism configs
## Model parallelism, 1 is no MP
## Currently we only support MP=1 with SP>1
mp_size=1

## Sequence parallelism, 1 is no SP
sp_size=4

## Pipeline parallelism. To disable PP, set pp_size to 1 and no_pp to true.
## Note that currently both curriculum learning and random-LTD are NOT
## compatible with pipeline parallelism.
pp_size=1
no_pp="true"

## ZeRO-based data parallelism, stage=0 will disable ZeRO
zero_stage=3

## Total number of GPUs. ds_ssh is from DeepSpeed library.
num_gpus=$(($(ds_ssh nvidia-smi --query-gpu=name --format=csv,noheader | wc -l)-2))
num_gpus_pernode=$(nvidia-smi --query-gpu=name --format=csv,noheader | wc -l)
num_node=$(( ${num_gpus} / ${num_gpus_pernode} ))

## Data parallel size.
dp_size=$(( ${num_gpus} / ${pp_size} / ${mp_size} / ${sp_size} ))

## Micro batch size per GPU
## Make sure that batch_size <= global_batch_size*pp_size*mp_size/num_gpus
## Reduce it manually if GPU OOM
# batch_size=$(( ${global_batch_size} / ${dp_size} ))
batch_size=2

###############################################################################
### Misc configs
log_interval=10
eval_iters=10
eval_interval=100
# num_save controls how frequent to save checkpoint. num_save=20 means that a
# checkpoint will be saved every 5% of training. For longer training you would
# want larger num_save to save more frequently, and vice versa.
num_save=100
estimated_train_iter=$((${train_tokens} / ${seq_len} / ${global_batch_size}))
# save_interval=$((${estimated_train_iter} / ${num_save}))
save_interval=100

## Activation checkpointing saves GPU memory, but reduces training speed
activation_checkpoint="true"
# activation_checkpoint="false"

## Whether or not log optimizer states (norms, max abs values) to tensorboard.
## This is not required for training and might save GPU memory when turned off.
log_optimizer_state="false"
###############################################################################
### Output and data configs
current_time=$(date "+%Y.%m.%d_%H.%M.%S")
host="${HOSTNAME}"
seed=1234
num_workers=0

data_path="BookCorpusDataset_text_document"
if [ ! -f "BookCorpusDataset_text_document.bin" ]; then
wget https://the-eye.eu/public/AI/pile_neox/data/BookCorpusDataset_text_document.bin
fi
if [ ! -f "BookCorpusDataset_text_document.idx" ]; then
wget https://the-eye.eu/public/AI/pile_neox/data/BookCorpusDataset_text_document.idx
fi

vocab_path="gpt2-vocab.json"
if [ ! -f "$vocab_path" ]; then
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json
fi
merge_path="gpt2-merges.txt"
if [ ! -f "$merge_path" ]; then
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt
fi

prescale_grad="true"
jobname="gpt_${model_size}B_tok${train_tokens_in_billion}B"
jobname="${jobname}_lr${lr}_min${min_lr}_w${lr_warmup_tokens_in_million}M_d${lr_decay_tokens_in_billion}B_${lr_decay_style}"
jobname="${jobname}_gbs${global_batch_size}_mbs${batch_size}_g${num_gpus}"
if [[ $zero_stage -gt 0 ]]; then
jobname="${jobname}_z${zero_stage}"
prescale_grad="false"
fi
if [[ $sp_size -gt 1 ]]; then
jobname="${jobname}_sp${sp_size}"
fi
if [[ $mp_size -gt 1 ]]; then
jobname="${jobname}_mp${mp_size}"
fi
if [ "${no_pp}" = "false" ]; then
jobname="${jobname}_pp${pp_size}"
fi
jobname="${jobname}_seed${seed}_rebase"

username=$(whoami)
output_home="output"
log_path="${output_home}/log/"
checkpoint_path="${output_home}/checkpoint/${jobname}"
tensorboard_dir="${output_home}/tensorboard/"
tensorboard_path="${tensorboard_dir}${jobname}_${host}_${current_time}"
mkdir -p ${log_path}
mkdir -p ${checkpoint_path}
mkdir -p ${tensorboard_path}
###############################################################################
data_options=" \
--vocab-file ${vocab_path} \
--merge-file ${merge_path} \
--data-path ${data_path} \
--data-impl mmap"

## If CL is used, make sure to set "--split" the same as what you used during
## offline data analysis&indexing.
megatron_options=" \
--override-opt_param-scheduler \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--tensor-model-parallel-size 1 \
--ds-sequence-parallel-fpdt \
--ds-sequence-parallel-fpdt-chunk-size 65536 \
--ds-sequence-parallel-fpdt-offloading \
--ds-sequence-parallel-size ${sp_size} \
--init-method-std ${init_std} \
--lr-decay-tokens ${lr_decay_tokens} \
--lr-warmup-tokens ${lr_warmup_tokens} \
--micro-batch-size ${batch_size} \
--exit-duration-in-mins ${exit_duration} \
--global-batch-size ${global_batch_size} \
--num-layers ${num_layers} \
--hidden-size ${hidden_size} \
--num-attention-heads ${num_attn_heads} \
--seq-length ${seq_len} \
--max-position-embeddings ${seq_len} \
--train-tokens ${train_tokens} \
--train-samples ${train_samples} \
--lr ${lr} \
--min-lr ${min_lr} \
--lr-decay-style ${lr_decay_style} \
--split 949,50,1 \
--log-interval ${log_interval} \
--eval-interval ${eval_interval} \
--eval-iters ${eval_iters} \
--save-interval ${save_interval} \
--weight-decay 0.1 \
--attention-dropout 0.0 \
--hidden-dropout 0.0 \
--clip-grad 1.0 \
--hysteresis 2 \
--num-workers ${num_workers} \
--fp16 \
--seed ${seed} \
--load ${checkpoint_path} \
--save ${checkpoint_path} \
--no-async-tensor-model-parallel-allreduce \
--use-flash-attn-v2 \
--tensorboard-queue-size 1 \
--use-rotary-position-embeddings \
--rotary-percent 0.25 \
--rotary-position-embeddings-theta 100000000 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-validation-ppl-to-tensorboard \
--tensorboard-dir ${tensorboard_path}"

if [ "${activation_checkpoint}" = "true" ]; then
megatron_options="${megatron_options} \
--checkpoint-activations"
fi

if [ "${log_optimizer_state}" = "true" ]; then
megatron_options="${megatron_options} \
--log-optimizer-states-to-tensorboard"
fi

config_json="ds_config_gbs${global_batch_size}_mbs${batch_size}_log${log_interval}_zero${zero_stage}.json"
template_json="ds_config_gpt_TEMPLATE.json"
sed "s/GBSIZE/${global_batch_size}/" ${template_json} \
| sed "s/MBSIZE/${batch_size}/" \
| sed "s/LOG_INTERVAL/${log_interval}/" \
| sed "s/ZERO_STAGE/${zero_stage}/" \
| sed "s/PRESCALE_GRAD/${prescale_grad}/" \
> ${config_json}

deepspeed_options=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${zero_stage} \
--pipeline-model-parallel-size ${pp_size}"

if [[ "${no_pp}" = "true" ]]; then
deepspeed_options="${deepspeed_options} \
--no-pipeline-parallel"
fi

if [ "${activation_checkpoint}" = "true" ]; then
deepspeed_options="${deepspeed_options} \
--deepspeed-activation-checkpointing \
--checkpoint-in-cpu"
fi

## When saving checkpoint to a storage with cache, their could be consistency
## issue of the pointer to latest checkpoint. Here we find the correct pointer
## and broadcast it to all nodes.
iteration_file="$checkpoint_path/latest_checkpointed_iteration.txt"
iteration_file_2="$checkpoint_path/latest"
iteration=0
for (( node = 0; node <= num_node-1; node++ ))
do
if $(ssh -q worker-"$node" "test -f \"$iteration_file\""); then
local_iteration=$(ssh -q worker-"$node" cat $iteration_file)
iteration=$(( ${local_iteration} > ${iteration} ? ${local_iteration} : ${iteration} ))
fi
done
if [[ $iteration -gt 0 ]]; then
iteration_2="global_step${iteration}"
ds_ssh "echo $iteration > $iteration_file"
ds_ssh "echo $iteration_2 > $iteration_file_2"
fi

deepspeed ${dir}/../../pretrain_gpt.py ${megatron_options} ${data_options} ${deepspeed_options} 2>&1 | tee ${log_path}/${jobname}_${host}_${current_time}.log
6 changes: 6 additions & 0 deletions megatron/arguments.py
Original file line number Diff line number Diff line change
Expand Up @@ -983,6 +983,12 @@ def _add_training_args(parser):
group.add_argument('--ds-sequence-parallel-overlap-comm', action='store_true',
help='overlap comm for ds-sequence-parallel',
dest='ds_sequence_parallel_overlap_comm')
group.add_argument('--ds-sequence-parallel-fpdt', action='store_true',
help='use DeepSpeed sequence parallelism with FPDT.')
group.add_argument('--ds-sequence-parallel-fpdt-chunk-size', type=int, default=65536,
help='Chunk size used in FPDT attention.')
group.add_argument('--ds-sequence-parallel-fpdt-offloading', action='store_true',
help='use DeepSpeed sequence parallelism FPDT with offloading.')
group.add_argument('--no-gradient-accumulation-fusion',
action='store_false',
help='Disable fusing gradient accumulation to weight '
Expand Down
10 changes: 6 additions & 4 deletions megatron/initialize.py
Original file line number Diff line number Diff line change
Expand Up @@ -350,9 +350,12 @@ def _warmup_jit_function():
dtype = torch.float32

# Warmup fused bias+gelu
seq_length = args.seq_length
if args.ds_sequence_parallel_fpdt: # when using FPDT on extremly long sequence, we use the chunk length in FPDT to warmup instead of the ordinary SP sequence length which will cause OOM.
seq_length = args.ds_sequence_parallel_fpdt_chunk_size
bias = torch.rand(args.ffn_hidden_size // args.tensor_model_parallel_size,
dtype=dtype, device='cuda')
input = torch.rand((args.seq_length // args.ds_sequence_parallel_size, args.micro_batch_size,
input = torch.rand((seq_length // args.ds_sequence_parallel_size, args.micro_batch_size,
args.ffn_hidden_size // args.tensor_model_parallel_size),
dtype=dtype, device='cuda')
# Warmup JIT fusions with the input grad_enable state of both forward
Expand All @@ -365,9 +368,8 @@ def _warmup_jit_function():

# Warmup fused bias+dropout+add
if args.sequence_parallel:
seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size()
else:
seq_length = args.seq_length
seq_length = seq_length // mpu.get_tensor_model_parallel_world_size()

input = torch.rand((seq_length // args.ds_sequence_parallel_size, args.micro_batch_size, args.hidden_size),
dtype=dtype, device='cuda')
residual = torch.rand((seq_length // args.ds_sequence_parallel_size, args.micro_batch_size, args.hidden_size),
Expand Down
Loading

0 comments on commit ec194e7

Please sign in to comment.