Skip to content

Financial Library ( Economic Scenario Generator, Asset Liability Management, Pricing )

License

Notifications You must be signed in to change notification settings

montrixdev/mxdevtool-python

Repository files navigation

MxDevTool(Beta) : Financial Library

image image image

image image

MxDevTool is a Integrated Developing Tools for financial analysis. Now is Beta Release version. The Project is built on top of QuantLib-Python.

Xenarix(Economic Scenario Generator) is moved into submodule of MxDevTool.


Feature Support

Functionalty :

  • Economic Scenario Generator
  • Asset Liability Mangement
  • Random Number Generator (MersenneTwister, Sobol, ...)
  • Moment-Matching Process
  • InterestRateSwap Pricing
  • Option Pricing
  • Fast Calculation

Version Rule

Version syntex is {Major}-{Miner}-{QuantLib_Version}-{Patch}


Installation

To install MxDevTool, simply use pip :

$ pip install mxdevtool

Install Troubleshooting

If you have following error :

ERROR: No matching distribution found for ( numpy ) (from mxdevtool==0.8.30.2)

You need to install ( numpy ) first.


If you use python 3.9 and following error

RuntimeError: The current Numpy installation ('~~~\\numpy\\__init__.py') fails to pass a sanity check due to a bug in the windows runtime. See this issue for more information: https://tinyurl.com/y3dm3h86

use numpy version numpy==1.19.3 -> Link


Quick Usage

Hull White Model Generate

import sys, os
import mxdevtool as mx
import mxdevtool.xenarix as xen
import mxdevtool.termstructures as ts
import numpy as np

filename = './test_hw1f.npz'
ref_date = mx.Date.todaysDate()

def model():
    tenor_rates = [('3M', 0.0151),
                ('6M', 0.0152),
                ('9M', 0.0153),
                ('1Y', 0.0154),
                ('2Y', 0.0155),
                ('3Y', 0.0156),
                ('4Y', 0.0157),
                ('5Y', 0.0158),
                ('7Y', 0.0159),
                ('10Y', 0.016),
                ('15Y', 0.0161),
                ('20Y', 0.0162)]

    tenors = []
    zerorates = []

    interpolator1DType = mx.Interpolator1D.Linear
    extrapolator1DType = mx.Extrapolator1D.FlatForward

    for tr in tenor_rates:
        tenors.append(tr[0])
        zerorates.append(tr[1])

    fittingCurve = ts.ZeroYieldCurve(ref_date, tenors, zerorates, interpolator1DType, extrapolator1DType)
    alphaPara = xen.DeterministicParameter(['1y', '20y', '100y'], [0.1, 0.15, 0.15])
    sigmaPara = xen.DeterministicParameter(['20y', '100y'], [0.01, 0.015])

    hw1f = xen.HullWhite1F('hw1f', fittingCurve, alphaPara, sigmaPara)

    return hw1f

def test():
    print('hw1f test...', filename)

    m = model()
    timeGrid = mx.TimeDateGrid_Equal(ref_date, 3, 365)
    rsg = xen.Rsg(sampleNum=5000)
    results = xen.generate1d(m, None, timeGrid, rsg, filename, False)

if __name__ == "__main__":
    test()

Usage

Import MxDevTool Library :

import os, time, platform
import numpy as np
import mxdevtool as mx
import mxdevtool.shock as mx_s
import mxdevtool.xenarix as xen
import mxdevtool.termstructures as ts
import mxdevtool.quotes as mx_q
import mxdevtool.marketconvension as mx_m
import mxdevtool.data.providers as mx_dp
import mxdevtool.data.repositories as mx_dr
import mxdevtool.utils as utils

Models and Calc

Set Common Variables :

ref_date = mx.Date.todaysDate()

# (period, rf, div)
tenor_rates = [('3M',  0.0151, 0.01),
               ('6M',  0.0152, 0.01),
               ('9M',  0.0153, 0.01),
               ('1Y',  0.0154, 0.01),
               ('2Y',  0.0155, 0.01),
               ('3Y',  0.0156, 0.01),
               ('4Y',  0.0157, 0.01),
               ('5Y',  0.0158, 0.01),
               ('7Y',  0.0159, 0.01),
               ('10Y', 0.0160, 0.01),
               ('15Y', 0.0161, 0.01),
               ('20Y', 0.0162, 0.01)]

tenors = []
rf_rates = []
div_rates = []
vol = 0.2

interpolator1DType = mx.Interpolator1D.Linear
extrapolator1DType = mx.Extrapolator1D.FlatForward

for tr in tenor_rates:
    tenors.append(tr[0])
    rf_rates.append(tr[1])
    div_rates.append(tr[2])

x0 = 420

# yieldCurve
rfCurve = ts.ZeroYieldCurve(ref_date, tenors, rf_rates, interpolator1DType, extrapolator1DType)
divCurve = ts.ZeroYieldCurve(ref_date, tenors, div_rates, interpolator1DType, extrapolator1DType)

utils.check_hashCode(rfCurve, divCurve)

# variance termstructure
const_vts = ts.BlackConstantVol(refDate=ref_date, vol=vol)

periods = [str(i+1) + 'm' for i in range(0, 24)] # monthly upto 2 years
expirydates = [null_calendar.advance(ref_date, p) for p in periods]
volatilities = [0.260, 0.223, 0.348, 0.342, 0.328, 0.317, 0.310, 0.302, 0.296, 0.291, 0.286, 0.282, 0.278, 0.275, 0.273, 0.270, 0.267, 0.263, 0.261, 0.258, 0.255, 0.253, 0.252, 0.251]

curve_vts = ts.BlackVarianceCurve(refDate=ref_date, dates=expirydates, volatilities=volatilities)

utils.check_hashCode(const_vts, curve_vts)

Models

Geometric Brownian Motion ( Contant Parameter ) :

gbmconst = xen.GBMConst('gbmconst', x0=x0, rf=0.032, div=0.01, vol=0.15)

Geometric Brownian Motion :

gbm = xen.GBM('gbm', x0=x0, rfCurve=rfCurve , divCurve=divCurve, volTs=curve_vts)

Heston :

heston = xen.Heston('heston', x0=x0, rfCurve=rfCurve, divCurve=divCurve, v0=0.2, volRevertingSpeed=0.1, longTermVol=0.15, volOfVol=0.1, rho=0.3)

Hull-White 1 Factor :

alphaPara = xen.DeterministicParameter(['1y', '20y', '100y'], [0.1, 0.15, 0.15])
sigmaPara = xen.DeterministicParameter(['20y', '100y'], [0.01, 0.015])

hw1f = xen.HullWhite1F('hw1f', fittingCurve=rfCurve, alphaPara=alphaPara, sigmaPara=sigmaPara)

Black–Karasinski 1 Factor :

bk1f = xen.BK1F('bk1f', fittingCurve=rfCurve, alphaPara=alphaPara, sigmaPara=sigmaPara)

Cox-Ingersoll-Ross 1 Factor :

cir1f = xen.CIR1F('cir1f', r0=0.02, alpha=0.1, longterm=0.042, sigma=0.03)

Vasicek 1 Factor :

vasicek1f = xen.Vasicek1F('vasicek1f', r0=0.02, alpha=0.1, longterm=0.042, sigma=0.03)

Extended G2 :

g2ext = xen.G2Ext('g2ext', fittingCurve=rfCurve, alpha1=0.1, sigma1=0.01, alpha2=0.2, sigma2=0.02, corr=0.5)

Calcs in Models

ShortRate Model :

hw1f_spot3m = hw1f.spot('hw1f_spot3m', maturity=mx.Period(3, mx.Months), compounding=mx.Compounded)
hw1f_overnight = hw1f.overnight('hw1f_sofr', mx_m.IndexFactory().get_overnightIndex('sofr'))
hw1f_libor = hw1f.ibor('libor3m', mx_m.IndexFactory().get_iborIndex('libor', mx.Period(3, mx.Months)))
hw1f_swap = hw1f.swaprate('cms5y', mx_m.IndexFactory().get_swapIndex('krwirs', mx.Period(5, mx.Years), mx.Period(3, mx.Months)))
hw1f_bond = hw1f.bondrate('cmt10y', mx_m.IndexFactory().get_bondIndex('ktb', mx.Period(5, mx.Years), mx.Period(6, mx.Months)))

# hw1f_forward6m3m = hw1f.forward('hw1f_forward6m3m', startTenor=mx.Period(6, mx.Months), maturityTenor=mx.Period(3, mx.Months), compounding=mx.Compounded)
hw1f_forward6m3m = hw1f.forward('hw1f_forward6m3m', startTenor=0.5, maturityTenor=3.0, compounding=mx.Compounded)
hw1f_discountFactor = hw1f.discountFactor('hw1f_discountFactor')
hw1f_discountBond3m = hw1f.discountBond('hw1f_discountBond3m', maturity=mx.Period(3, mx.Months))

r_t = 0.02 # short rate
hw1f.model_discountBond(0.0, 1.0, r_t)
hw1f.model_spot(1.0, 2.0, r_t) # continuous compounding
hw1f.model_forward(1.0, 2.0, 3.0, r_t) # continuous compounding
hw1f.model_discount(1.0) #

Calcs

Constant Value and Array :

constantValue = xen.ConstantValue('constantValue', 15)
constantArr = xen.ConstantArray('constantArr', [15,14,13])

Operators :

oper1 = gbmconst + gbm
oper2 = gbmconst - gbm
oper3 = (gbmconst * gbm).withName('multiple_gbmconst_gbm')
oper4 = gbmconst / gbm

oper5 = gbmconst + 10
oper6 = gbmconst - 10
oper7 = gbmconst * 1.1
oper8 = gbmconst / 1.1

oper9 = 10 + gbmconst
oper10 = 10 - gbmconst
oper11 = 1.1 * gbmconst
oper12 = 1.1 / gbmconst

LinearOper :

linearOper1 = xen.LinearOper('linearOper1', gbmconst, multiple=1.1, spread=10)
linearOper2 = gbmconst.linearOper('linearOper2', multiple=1.1, spread=10)

Shift :

shiftRight1 = xen.Shift('shiftRight1', hw1f, shift=5)
shiftRight2 = hw1f.shift('shiftRight2', shift=5, fill_value=0.0)

shiftLeft1 = xen.Shift('shiftLeft1', cir1f, shift=-5)
shiftLeft2 = cir1f.shift('shiftLeft2', shift=-5, fill_value=0.0)

Returns :

returns1 = xen.Returns('returns1', gbm,'return')
returns2 = gbm.returns('returns2', 'return')

logreturns1 = xen.Returns('logreturns1', gbmconst,'logreturn')
logreturns2 = gbmconst.returns('logreturns2', 'logreturn')

cumreturns1 = xen.Returns('cumreturns1', heston,'cumreturn')
cumreturns2 = heston.returns('cumreturns2', 'cumreturn')

cumlogreturns1 = xen.Returns('cumlogreturns1', gbm,'cumlogreturn')
cumlogreturns2 = gbm.returns('cumlogreturns2', 'cumlogreturn')

FixedRateBond :

fixedRateBond = xen.FixedRateBond('fixedRateBond', vasicek1f, notional=10000, fixedRate=0.0, couponTenor=mx.Period(3, mx.Months), maturityTenor=mx.Period(3, mx.Years), discountCurve=rfCurve)

TimeGrid

timegrid1  = mx.TimeDateGrid_Equal(refDate=ref_date, maxYear=3, nPerYear=365)
timegrid2  = mx.TimeDateGrid_Times(refDate=ref_date, times=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
timegrid3  = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='day')
timegrid4  = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='week')
timegrid5  = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='month', frequency_day=10)
timegrid6  = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='quarter', frequency_day=10)
timegrid7  = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='semiannual', frequency_day=10)
timegrid8  = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='annual', frequency_month=8, frequency_day=10)
timegrid9  = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='firstofmonth')
timegrid10 = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='firstofquarter')
timegrid11 = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='firstofsemiannual')
timegrid12 = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='firstofannual')
timegrid13 = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='endofmonth')
timegrid14 = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='endofquarter')
timegrid15 = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='endofsemiannual')
timegrid16 = mx.TimeDateGrid_Custom(refDate=ref_date, maxYear=maxYear, frequency_type='endofannual')

Random Sequence Generator

pseudo_rsg = xen.Rsg(sampleNum=1000, dimension=365, seed=1, skip=0, isMomentMatching=False, randomType='pseudo', subType='mersennetwister', randomTransformType='boxmullernormal')
pseudo_rsg2 = xen.RsgPseudo(sampleNum=1000, dimension=365, randomTransformType='uniform')

halton_rsg = xen.RsgHalton(sampleNum=1000, dimension=365)

sobol_rsg = xen.Rsg(sampleNum=1000, dimension=365, seed=1, skip=2048, isMomentMatching=False, randomType='sobol', subType='joekuod7', randomTransformType='invnormal')
sobol_rsg2 = xen.RsgSobol(sampleNum=1000, dimension=365, skip=2048)

latinhs_rsg = xen.RsgLatinHs(pseudo_rsg2)

arr = np.random.random((1000, 365 * 3)) # timegrid1, rand is not fixed
np.save('./external_rsg.npy', arr)
external_rsg = xen.RsgExternal(sampleNum=1000, dimension=365 * 3, filename='./external_rsg.npy')

rsg_list = [pseudo_rsg, pseudo_rsg2, halton_rsg, faure_rsg, sobol_rsg, sobol_rsg2, latinhs_rsg, external_rsg]
# for rsg in rsg_list:
#     print(rsg.type(),  rsg.nextSequence()[0:3], rsg.nextSequence()[0:3])
    

Scenario Generate

# single model
filename1='./single_model.npz'
results1 = xen.generate1d(model=gbm, calcs=None, timegrid=timegrid1, rsg=pseudo_rsg, filename=filename1, isMomentMatching=False)

# multiple model
filename2='./multiple_model.npz'
models = [gbmconst, gbm, hw1f, cir1f, vasicek1f]
corrMatrix = mx.IdentityMatrix(len(models))

results2 = xen.generate(models=models, calcs=None, corr=corrMatrix, timegrid=timegrid3, rsg=sobol_rsg, filename=filename2, isMomentMatching=False)

# multiple model with calc
filename3='./multiple_model_with_calc.npz'
calcs = [oper1, oper3, linearOper1, linearOper2, shiftLeft2, returns1, fixedRateBond, hw1f_spot3m]
results3 = xen.generate(models=models, calcs=calcs, corr=corrMatrix, timegrid=timegrid4, rsg=sobol_rsg, filename=filename3, isMomentMatching=False)

all_models = [ gbmconst, gbm, heston, hw1f, bk1f, cir1f, vasicek1f, g2ext ]
all_calcs = [ hw1f_spot3m, hw1f_forward6m3m, hw1f_discountFactor, hw1f_discountBond3m,
                constantValue, constantArr, oper1, oper2, oper3, oper4, oper5, oper6, oper7, oper8, oper9, oper10, oper11, oper12,
                linearOper1, linearOper2, shiftRight1, shiftRight2, shiftLeft1, shiftLeft2, returns1, returns2, logreturns1, logreturns2,
                cumreturns1, cumreturns2, cumlogreturns1, cumlogreturns2, fixedRateBond ]

filename4='./multiple_model_with_calc_all.npz'
corrMatrix2 = mx.IdentityMatrix(len(all_models))

corrMatrix2[1][0] = 0.5 # correlation matrix should be positive semidefinite
corrMatrix2[0][1] = 0.5

results4 = xen.generate(models=all_models, calcs=all_calcs, corr=corrMatrix2, timegrid=timegrid4, rsg=sobol_rsg, filename=filename4, isMomentMatching=False)

Results

# results
results = results3

resultsInfo = ( results.genInfo, results.refDate, results.maxDate, results.maxTime,
               results.randomMomentMatch, results.randomSubtype, results.randomType,
               results.seed, results.shape )

ndarray = results.toNumpyArr() # pre load all scenario data to ndarray

t_pos = 264
scenCount = 15

calculated_tpos_264 = results.tPosSlice(t_pos, scenCount)

multipath = results[scenCount]
multipath_arr = ndarray[scenCount]

# t_pos data
multipath_t_pos = results.tPosSlice(t_pos=t_pos, scenCount=scenCount) 
multipath_t_pos_arr = ndarray[scenCount,:,t_pos]

multipath_all_t_pos = results.tPosSlice(t_pos=t_pos) # all t_pos data

# t_pos data of using date
t_date = ref_date + 10
multipath_using_date = results.dateSlice(date=t_date, scenCount=scenCount) 
multipath_all_using_date = results.dateSlice(date=t_date) # all t_pos data

# t_pos data of using time
t_time = 1.32
multipath_using_time = results.timeSlice(time=t_time, scenCount=scenCount) 
multipath_all_using_time = results.timeSlice(time=t_time) # all t_pos data

Analytic Path and Test Calculation

all_pv_list = []
all_pv_list.extend(all_models)
all_pv_list.extend(all_calcs)

for pv in all_pv_list:
    analyticPath = pv.analyticPath(timegrid2)

input_arr = [0.01, 0.02, 0.03, 0.04, 0.05]
input_arr2d = [[0.01, 0.02, 0.03, 0.04, 0.05], [0.06, 0.07, 0.08, 0.09, 0.1]]

for pv in all_calcs:
    if pv.sourceNum == 1:
        calculatePath = pv.calculatePath(input_arr, timegrid1)
    elif pv.sourceNum == 2:
        calculatePath = pv.calculatePath(input_arr2d, timegrid1)
    else:
        pass

Repository

repo_path = './xenrepo'
repo_config = { 'location': repo_path }
repo = mx_dr.FolderRepository(repo_config)
mx_dr.settings.set_repo(repo)

Xenarix Manager

xm = repo.xenarix_manager

filename5 = 'scen_all.npz'
scen_all = xen.Scenario(models=all_models, calcs=all_calcs, corr=corrMatrix2, timegrid=timegrid4, rsg=sobol_rsg, filename=filename5, isMomentMatching=False)

filename6 = 'scen_multiple.npz'
scen_multiple = xen.Scenario(models=models, calcs=[], corr=corrMatrix, timegrid=timegrid4, rsg=pseudo_rsg, filename=filename6, isMomentMatching=False)

utils.check_hashCode(scen_all)

# scenario - save, load, list
name1 = 'name1'
xm.save_xen(name1, scen_all) # single contents
scen_name1 = xm.load_xen(name=name1)

scen_name1.filename = './reloaded_scenfile.npz'
scen_name1.generate()

name2 = 'name2'
xm.save_xens(name=name2, scen_all=scen_all, scen_multiple=scen_multiple) # multiple contents
scen_name2 = xm.load_xens(name=name2)

scenList = xm.scenList() # ['name1', 'name2']

# generate in result directory
xm.generate_xen(scenList[0])

Market Data

mdp = mx_dp.SampleMarketDataProvider()
mrk = mdp.get_data()

mrk_clone = mrk.clone()
utils.compare_hashCode(mrk, mrk_clone)

zerocurve1 = mrk.get_yieldCurve('zerocurve1')
zerocurve2 = mrk.get_yieldCurve('zerocurve2')

Scenario Builder

sb = xen.ScenarioJsonBuilder()

# the string parameters is converted by value in market data
sb.addModel(xen.GBMConst.__name__, 'gbmconst', x0='kospi2', rf='cd91', div=0.01, vol=0.3)
sb.addModel(xen.GBM.__name__, 'gbm', x0=100, rfCurve='zerocurve1', divCurve=divCurve, volTs=volTs)
sb.addModel(xen.Heston.__name__, 'heston', x0=100, rfCurve='zerocurve1', divCurve=divCurve, v0=0.2, volRevertingSpeed=0.1, longTermVol=0.15, volOfVol=0.1, rho=0.3)
sb.addModel(xen.HullWhite1F.__name__, 'hw1f', fittingCurve='zerocurve2', alphaPara=alphaPara, sigmaPara=sigmaPara)
sb.addModel(xen.BK1F.__name__, 'bk1f', fittingCurve='zerocurve2', alphaPara=alphaPara, sigmaPara=sigmaPara)

sb.addModel(xen.CIR1F.__name__, 'cir1f', r0='cd91', alpha=0.1, longterm=0.042, sigma=0.03)
sb.addModel(xen.Vasicek1F.__name__, 'vasicek1f', r0='cd91', alpha='alpha1', longterm=0.042, sigma=0.03)
sb.addModel(xen.G2Ext.__name__, 'g2ext', fittingCurve=rfCurve, alpha1=0.1, sigma1=0.01, alpha2=0.2, sigma2=0.02, corr=0.5)

sb.corr[1][0] = 0.5
sb.corr[0][1] = 0.5
sb.corr[0][2] = 'kospi2_ni225_corr'
sb.corr[2][0] = 'kospi2_ni225_corr'

sb.addCalc(xen.SpotRate.__name__, 'hw1f_spot3m', ir_pv='hw1f', maturityTenor='3m', compounding=mx.Compounded)
sb.addCalc(xen.ForwardRate.__name__, 'hw1f_forward6m3m', ir_pv='hw1f', startTenor=mx.Period(6, mx.Months), maturityTenor=mx.Period(3, mx.Months), compounding=mx.Compounded)
sb.addCalc(xen.ForwardRate.__name__, 'hw1f_forward6m3m_2', ir_pv='hw1f', startTenor=0.5, maturityTenor=0.25, compounding=mx.Compounded)
sb.addCalc(xen.DiscountFactor.__name__, 'hw1f_discountFactor', ir_pv='hw1f')
sb.addCalc(xen.DiscountBond.__name__, 'hw1f_discountBond3m', ir_pv='hw1f', maturityTenor=mx.Period(3, mx.Months))

sb.addCalc(xen.ConstantValue.__name__, 'constantValue', v=15)
sb.addCalc(xen.ConstantArray.__name__, 'constantArr', arr=[15,14,13])

sb.addCalc(xen.AdditionOper.__name__, 'addOper1', pv1='gbmconst', pv2='gbm')
sb.addCalc(xen.SubtractionOper.__name__, 'subtOper1', pv1='gbmconst', pv2='gbm')
sb.addCalc(xen.MultiplicationOper.__name__, 'multiple_gbmconst_gbm', pv1='gbmconst', pv2='gbm')
sb.addCalc(xen.DivisionOper.__name__, 'divOper1', pv1='gbmconst', pv2='gbm')

sb.addCalc(xen.AdditionConstOper.__name__, 'addOper2', pv1='gbmconst', v=10)
sb.addCalc(xen.SubtractionConstOper.__name__, 'subtOper2', pv1='gbmconst', v=10)
sb.addCalc(xen.MultiplicationConstOper.__name__, 'mulOper2', pv1='gbmconst', v=1.1)
sb.addCalc(xen.DivisionConstOper.__name__, 'divOper1', pv1='gbmconst', v=1.1)

sb.addCalc(xen.AdditionConstReverseOper.__name__, 'addOper2', v=10, pv2='gbmconst')
sb.addCalc(xen.SubtractionConstReverseOper.__name__, 'subtOper2', v=10, pv2='gbmconst')
sb.addCalc(xen.MultiplicationConstReverseOper.__name__, 'mulOper2', v=1.1, pv2='gbmconst')
sb.addCalc(xen.DivisionConstReverseOper.__name__, 'divOper1', v=1.1, pv2='gbmconst')

sb.addCalc(xen.LinearOper.__name__, 'linearOper1', pv='gbm', multiple=1.1, spread=10)
sb.addCalc(xen.Shift.__name__, 'shiftRight1', pv='hw1f', shift=5, fill_value=0.0)
sb.addCalc(xen.Shift.__name__, 'shiftLeft1', pv='cir1f', shift=-5, fill_value=0.0)

sb.addCalc(xen.Returns.__name__, 'returns1', pv='gbm', return_type='return')
sb.addCalc(xen.Returns.__name__, 'logreturns1', pv='gbmconst', return_type='logreturn')
sb.addCalc(xen.Returns.__name__, 'cumreturns1', pv='heston', return_type='cumreturn')
sb.addCalc(xen.Returns.__name__, 'cumlogreturns1', pv='gbm', return_type='cumlogreturn')

sb.addCalc(xen.FixedRateBond.__name__, 'fixedRateBond', ir_pv='vasicek1f', notional=10000, fixedRate=0.0, couponTenor=mx.Period(3, mx.Months), maturityTenor=mx.Period(3, mx.Years), discountCurve=rfCurve)

sb.addCalc(xen.AdditionOper.__name__, 'addOper_for_remove', pv1='gbmconst', pv2='gbm')
sb.removeCalc('addOper_for_remove')

# scenarioBuilder - save, load, list
xm.save_xnb('sb1', sb=sb)

sb.setTimeGridCls(timegrid3)
sb.setRsgCls(pseudo_rsg)

xm.save_xnb('sb2', sb=sb)

sb.setTimeGrid(mx.TimeDateGrid_Custom.__name__, refDate=ref_date, maxYear=10, frequency_type='endofmonth')
sb.setRsg(xen.Rsg.__name__, sampleNum=1000)

xm.save_xnb('sb3', sb=sb)
xm.scenBuilderList() # ['sb1', 'sb2', 'sb3']

sb1_reload = xm.load_xnb('sb1')
sb2_reload = xm.load_xnb('sb2')
sb3_reload = xm.load_xnb('sb3')

utils.compare_hashCode(sb, sb3_reload)
utils.check_hashCode(sb, sb1_reload, sb2_reload, sb3_reload)

xm.generate_xnb('sb1', mrk)
xm.load_results_xnb('sb1')

scen = sb.build_scenario(mrk)

utils.check_hashCode(scen, sb)

res = scen.generate()
res1 = scen.generate_clone(filename='new_temp.npz') # clone generate with some change
# res.show()

Shock Traits

quote1 = mx_q.SimpleQuote('quote1', 100)

qst_add = mx_s.QuoteShockTrait(name='add_up1', value=10, operand='add')
qst_mul = mx_s.QuoteShockTrait('mul_up1', 1.1, 'mul')
qst_ass = mx_s.QuoteShockTrait('assign_up1', 0.03, 'assign')
qst_add2 = mx_s.QuoteShockTrait('add_down1', 15, 'add')
qst_mul2 = mx_s.QuoteShockTrait('mul_down2', 0.9, 'mul')

quoteshocktrait_list = [qst_add, qst_mul, qst_ass, qst_add2, qst_mul2]
quoteshocktrait_results = [100 + 10, (100 + 10)*1.1, 0.03, 0.03+15, (0.03+15)*0.9]
quote1_d = quote1.toDict()

for st, res in zip(quoteshocktrait_list, quoteshocktrait_results):
    st.calculate(quote1_d)
    assert res == quote1_d['v']

qcst = mx_s.CompositeQuoteShockTrait('comp1', [qst_add2, qst_mul2])

ycps = mx_s.YieldCurveParallelBpShockTrait('parallel_up1', 10)
vcps = mx_s.VolTsParallelShockTrait('vol_up1', 0.1)
# qcst = mx_s.CompositeQuoteShockTrait('comp2', [qst_add2, vcps])

shocktrait_list = quoteshocktrait_list + [qcst, ycps, vcps]

Shock

# build shock from shocktraits
shock1 = mx_s.Shock(name='shock1')

shock1.addShockTrait(target='kospi2', shocktrait=qst_add)
shock1.addShockTrait(target='spx', shocktrait=qst_add)
shock1.addShockTrait(target='ni*',  shocktrait=qst_add) # filter expression
shock1.addShockTrait(target='*', shocktrait=qst_mul)
shock1.addShockTrait(target='cd91', shocktrait=qst_ass)
shock1.addShockTrait(target='alpha1', shocktrait=qcst)

shock1.removeShockTrait(target='cd91')
shock1.removeShockTrait(shocktrait=qst_mul)
shock1.removeShockTrait(target='target2', shocktrait=ycps)
shock1.removeShockTraitAt(3)

Shock Scenario Model

# build shocked market data from shock
shocked_mrk1 = mx_s.build_shockedMrk(shock1, mrk)
shock2 = shock1.clone(name='shock2')
shocked_mrk2 = mx_s.build_shockedMrk(shock2, mrk)

utils.check_hashCode(shock1, shock2, shocked_mrk1, shocked_mrk2)

shockedScen_list = mx_s.build_shockedScen([shock1, shock2], sb, mrk)

shm = mx_s.ShockScenarioModel('shm1', basescen=scen, s_up=shockedScen_list[0], s_down=shockedScen_list[1])

basescen_name = 'basescen'
shm.addCompositeScenRes(name='compscen1', basescen_name=basescen_name, gbmconst='s_down')
# shm.removeCompositeScenRes(name='compscen1')
shm.compositeScenResList() # ['compscen1']

csr = xen.CompositeScenarioResults(shm.shocked_scen_res_d, basescen_name, gbmconst='s_down')

csr_arr = csr.toNumpyArr()
base_arr = scen.getResults().toNumpyArr()

assert base_arr[0][0][0] + qst_add.value == csr_arr[0][0][0] # replaced(gbmconst)
assert base_arr[0][1][0] == csr_arr[0][1][0] # not replaced(gbm)

Shock Manager

# shock manager - save, load, list
# extensions : shock(.shk), shocktrait(.sht), shockscenariomodel(.shm)
sfm = repo.shock_manager

# shocktrait
sht_name = 'shocktraits'
sfm.save_shts(sht_name, *shocktrait_list)
reloaded_sht_d = sfm.load_shts(sht_name)

for s in shocktrait_list:
    utils.check_hashCode(s, reloaded_sht_d[s.name])
    utils.compare_hashCode(s, reloaded_sht_d[s.name])

# shock
shk_name = 'shocks'
sfm.save_shks(shk_name, shock1, shock2)
reloaded_shk_d = sfm.load_shks(shk_name)

for s in [shock1, shock2]:
    utils.check_hashCode(s, reloaded_shk_d[s.name])
    utils.compare_hashCode(s, reloaded_shk_d[s.name])

# shock scenario model
shm_name = 'shockmodel'
sfm.save_shm(shm_name, shm)
reloaded_shm = sfm.load_shm(shm_name)

utils.check_hashCode(shm, reloaded_shm)
utils.compare_hashCode(shm, reloaded_shm)

shocked_scen_list = mx_s.build_shockedScen([shock1, shock2], sb, mrk)

for i, scen in enumerate(shocked_scen_list):
    name = 'shocked_scen{0}'.format(i)
    xm.save_xen(name, scen)
    res = scen.generate_clone(filename=name)

Market Data Providers

Bloomberg( blpapi - DAPI )

-> Requirements( now windows only ):

  • Install blpapi for python
  • bloomberg terminal( anyware, proffesional ) installation for windows
# bloomberg provider(blpapi) checking to request sample if available
try: mx_dp.check_bloomberg()
except: print('fail to check bloomberg')

Settings

# calendar holiday
mydates = [mx.Date(11, 10, 2022), mx.Date(12, 10, 2022), mx.Date(13, 10, 2022), mx.Date(11, 11, 2022)]

kr_cal = mx.SouthKorea()
user_cal = mx.UserCalendar('testcal')

for cal in [kr_cal, user_cal]:
    repo.addHolidays(cal, mydates, onlyrepo=False)
    # repo.removeHolidays(cal, mydates, onlyrepo=False)

Report and Graph

# graph
# rfCurve.graph_view(show=False)

# report
html_template = '''
    <!DOCTYPE html>
    <html>
    <head><title>{{ name }}</title></head>
    <body>
        <h1>Scenario Summary - Custom Template</h1>
        <p>models : {{ models_num }} - {{ model_names }}</p>
        <p>calcs : {{ calcs_num }} - {{ calc_names }}</p>
        <p>corr : {{ corr }}</p>
        <p>timegrid : {{ timegrid_items }}</p>
        <p>filename : {{ scen.filename }}</p>
        <p>ismomentmatch : {{ scen.isMomentMatching }}</p>
    </body>
    </html>
    '''

html = scen.report(typ='html', html_template=html_template, browser_isopen=False)

source file - usage.py


Examples

  • Pricing

    • CCP_SwapCurve
    • ELSStepDown
    • ExoticOption
    • Interpolation
    • IRS_Calculator
    • Swaption
    • VanillaOption
    • VanillaOptionGraph
  • RandomSeq

    • PseudoRandom
    • SobolRandom
  • Scenario

    • Blog
    • Models

For source code, check this repository.


Release History

1.0.32.2 (2023-10-28)

  • update base Quatlib 1.32
  • add calcs ( overnight, ibor, swap, bond )
  • terminate support python 3.6 3.7 on linux
  • terminate support python 3.8 3.9 on macos
  • add coin address for donation

1.0.29.17 (2023-01-28)

  • QuantLib dependency is redegined
  • Version Syntex is changed
  • Instruments pricings are removed for reconstruction
  • Faure Random is removed
  • TimeGrid is replaced by TimeDateGrid_Custom (because of QuantLib.TimeGrid)
  • Some arguments are changed (ex: pc -> pv in ProcessValue Operator)
  • 'test' branch is added for CI/CD Testing

0.8.38.0 (2022-11-07)

  • Rsg classes are redesigned
  • Latin Hypercube sampling is added
  • Random number consuming method is changed to timeside first
  • Model Generation performance is improved
  • BondReturn, Libor, SwapRate associated to shortrate(affinemodel) model is added
  • Some clone method is added for curve(yield, vol) shock and model copy
  • Structectured payoffs for pricing are testing(alpha version)
  • Linux aarch64 platform Support is started
  • Python 3.10, 3.11 version Support is started

0.8.37.1 (2022-4-10)

  • ExternalRsg(using numpy file) is added for external random number
  • Output file contents is updated(correlation, random) - v1.1.0
  • Correlation matrix bug is fixed(cholesky decomposition)

0.8.36.0 (2022-1-18)

  • Model Calculation Methods(spot, forward in shortrate model) are added
  • Build Process is Changed to Docker

0.8.35.3 (2021-8-12)

  • Library Dependencies are removed ( pandas, jinja2, matplot )
  • ZeroYieldCurve CurveType error bug fix
  • macOS 11 ( 64bit only ) Support

0.8.35.1 (2021-3-11)

  • User Calendar is added
  • Scenario Summary Report(html) is added
  • Termstructure graph view(matplot) is added
  • MonteCalro pricing function is added
  • Financial instruments pricing function is integrated with monteCalro pricing
  • Options arguments is redegined
  • File save is redegined
  • File extensions(xens, xnbs, shks) for multiple contentes is added to Managers(scen, shock)
  • TimeGrid bug is fixed(quarter, semiannual)

0.8.34.11 (2021-2-20)

  • Bloomberg dataprovider is added
  • BlackVolatilityCurve is added
  • Historical correlation sample is added
  • Instruments(sptions) is redegined and namespace is changed for pricing

0.8.33.9 (2021-1-26)

  • Shocked Scenario Manager
  • XenarixManager is updated for ScenarioBuilder
  • Correlation matrix checking(symmetric) is added
  • Python 3.5 version is excepted from supporting(hashCode unstablility)

0.8.32.1 (2021-1-16)

  • Linux Support (64bit only)

0.8.32.0 (2021-1-14)

  • Scenario Template Builder using market data
  • MarketDataProvider is added for scenario template building(now sampledataprovider)

0.8.31.0 (2020-12-31)

  • Scenario serialization functions is added for comparison of two scenario
  • Scenario save and load is added using xenarix manager

0.8.30.2 (2020-12-14)

  • Re-designed project is released
  • Xenarix is moved to mxdevtool

MxDevtool Structure

├── mxdevtool             <- The main library of this project.
├── config                <- a config file of this project.
├── utils                 <- Etc functions( ex - npzee ).
│
├── data                  <- data modules.
│   ├── providers
│   └── repositories
│
├── instruments           <- financial instruments for pricing.
│   ├── swap
│   ├── options
│   ├── outputs
│   ├── pricing
│   └── swap
│
├── quotes                <- market data quotes.
│
├── shock                 <- for risk statistics, pricing, etc.
│   └── traits
│
├── termstructures        <- input parameters.
│   ├── volts
│   └── yieldcurve
│
└── xenarix               <- economic scenario generator.
    ├── core
    └── pathcalc

Todo

  • MarketData input supporting
  • Scenario builder using market data
  • Xenarix Manager for save, load
  • Linux Support
  • Shocked Scenario Manager
  • MarketDataProvider for data vendors
    • Bloomberg DAPI(blpapi)
  • MonteCarlo pricer
    • Cpu calculation
    • Cpu/Gpu parallel calculation
  • Configuration Data Manager(calendar, ...)
  • Graph View(termstructure, scenarioResults)
  • Scenario report generating(summary, ...)
  • Actuarial functions(mortality)
  • Financial instruments
    • Structure
  • Package extension architecture
  • Quote design (stock, ir, fx, parameter, volatility, ...)
  • Documentation

Npzee Viewer

All scenario results are generated by npz file format. you can read directly using numpy library or Npzee Viewer.

You can download Npzee Viewer in WindowStore or WebPage.


Donation

  • Bitcoin - 3CK4Two4zCndGi5bSvNPEFMEjnzSExAyDs
  • Etherium - 0x976a09a3cbb38def4eda10291080c28c41926318

License

MxDevTool(non-commercial version) is free for non-commercial purposes. This is licensed under the terms of the Montrix Non-Commercial License.

Please contact us for the commercial purpose. master@montrix.co.kr

If you're interested in other financial application, visit Montrix