Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Correct computing offset of anchors. #1

Merged
merged 1 commit into from
Dec 16, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 12 additions & 6 deletions keras_retinanet/backend/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,16 +52,22 @@ def bbox_transform_inv(boxes, deltas, mean=None, std=None):
return pred_boxes


def shift(shape, stride, anchors):
def shift(image_shape, features_shape, stride, anchors):
""" Produce shifted anchors based on shape of the map and stride size.

Args
shape : Shape to shift the anchors over.
stride : Stride to shift the anchors with over the shape.
anchors: The anchors to apply at each location.
image_shape : Shape of the input image.
features_shape : Shape of the feature map.
stride : Stride to shift the anchors with over the image.
anchors : The anchors to apply at each location.
"""
shift_x = (keras.backend.arange(0, shape[1], dtype=keras.backend.floatx()) + keras.backend.constant(0.5, dtype=keras.backend.floatx())) * stride
shift_y = (keras.backend.arange(0, shape[0], dtype=keras.backend.floatx()) + keras.backend.constant(0.5, dtype=keras.backend.floatx())) * stride
# compute the offset of the anchors based on the image shape and the feature map shape
# see https://github.com/fizyr/keras-retinanet/issues/1073 for more information
offset_x = keras.backend.cast((image_shape[1] - (features_shape[1] - 1) * stride), keras.backend.floatx()) / 2.0
offset_y = keras.backend.cast((image_shape[0] - (features_shape[0] - 1) * stride), keras.backend.floatx()) / 2.0

shift_x = keras.backend.arange(0, features_shape[1], dtype=keras.backend.floatx()) * stride + offset_x
shift_y = keras.backend.arange(0, features_shape[0], dtype=keras.backend.floatx()) * stride + offset_y

shift_x, shift_y = meshgrid(shift_x, shift_y)
shift_x = keras.backend.reshape(shift_x, [-1])
Expand Down
19 changes: 10 additions & 9 deletions keras_retinanet/layers/_misc.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,28 +58,29 @@ def __init__(self, size, stride, ratios=None, scales=None, *args, **kwargs):
super(Anchors, self).__init__(*args, **kwargs)

def call(self, inputs, **kwargs):
features = inputs
features_shape = keras.backend.shape(features)
image, features = inputs
features_shape = keras.backend.shape(features)
image_shape = keras.backend.shape(image)

# generate proposals from bbox deltas and shifted anchors
if keras.backend.image_data_format() == 'channels_first':
anchors = backend.shift(features_shape[2:4], self.stride, self.anchors)
anchors = backend.shift(image_shape[2:4], features_shape[2:4], self.stride, self.anchors)
else:
anchors = backend.shift(features_shape[1:3], self.stride, self.anchors)
anchors = backend.shift(image_shape[1:3], features_shape[1:3], self.stride, self.anchors)
anchors = keras.backend.tile(keras.backend.expand_dims(anchors, axis=0), (features_shape[0], 1, 1))

return anchors

def compute_output_shape(self, input_shape):
if None not in input_shape[1:]:
if None not in input_shape[1][1:]:
if keras.backend.image_data_format() == 'channels_first':
total = np.prod(input_shape[2:4]) * self.num_anchors
total = np.prod(input_shape[1][2:4]) * self.num_anchors
else:
total = np.prod(input_shape[1:3]) * self.num_anchors
total = np.prod(input_shape[1][1:3]) * self.num_anchors

return (input_shape[0], total, 4)
return (input_shape[1][0], total, 4)
else:
return (input_shape[0], None, 4)
return (input_shape[1][0], None, 4)

def get_config(self):
config = super(Anchors, self).get_config()
Expand Down
7 changes: 4 additions & 3 deletions keras_retinanet/models/retinanet.py
Original file line number Diff line number Diff line change
Expand Up @@ -207,11 +207,12 @@ def __build_pyramid(models, features):
return [__build_model_pyramid(n, m, features) for n, m in models]


def __build_anchors(anchor_parameters, features):
def __build_anchors(anchor_parameters, image, features):
""" Builds anchors for the shape of the features from FPN.

Args
anchor_parameters : Parameteres that determine how anchors are generated.
image : The image input tensor.
features : The FPN features.

Returns
Expand All @@ -229,7 +230,7 @@ def __build_anchors(anchor_parameters, features):
ratios=anchor_parameters.ratios,
scales=anchor_parameters.scales,
name='anchors_{}'.format(i)
)(f) for i, f in enumerate(features)
)([image, f]) for i, f in enumerate(features)
]

return keras.layers.Concatenate(axis=1, name='anchors')(anchors)
Expand Down Expand Up @@ -328,7 +329,7 @@ def retinanet_bbox(

# compute the anchors
features = [model.get_layer(p_name).output for p_name in ['P3', 'P4', 'P5', 'P6', 'P7']]
anchors = __build_anchors(anchor_params, features)
anchors = __build_anchors(anchor_params, model.inputs[0], features)

# we expect the anchors, regression and classification values as first output
regression = model.outputs[0]
Expand Down
21 changes: 13 additions & 8 deletions keras_retinanet/utils/anchors.py
Original file line number Diff line number Diff line change
Expand Up @@ -234,24 +234,29 @@ def anchors_for_shape(
ratios=anchor_params.ratios,
scales=anchor_params.scales
)
shifted_anchors = shift(image_shapes[idx], anchor_params.strides[idx], anchors)
shifted_anchors = shift(image_shape, image_shapes[idx], anchor_params.strides[idx], anchors)
all_anchors = np.append(all_anchors, shifted_anchors, axis=0)

return all_anchors


def shift(shape, stride, anchors):
""" Produce shifted anchors based on shape of the map and stride size.
def shift(image_shape, features_shape, stride, anchors):
""" Produce shifted anchors based on shape of the image, shape of the feature map and stride.

Args
shape : Shape to shift the anchors over.
stride : Stride to shift the anchors with over the shape.
anchors: The anchors to apply at each location.
image_shape : Shape of the input image.
features_shape : Shape of the feature map.
stride : Stride to shift the anchors with over the image.
anchors : The anchors to apply at each location.
"""
# compute the offset of the anchors based on the image shape and the feature map shape
# see https://github.com/fizyr/keras-retinanet/issues/1073 for more information
offset_x = (image_shape[1] - (features_shape[1] - 1) * stride) / 2.0
offset_y = (image_shape[0] - (features_shape[0] - 1) * stride) / 2.0

# create a grid starting from half stride from the top left corner
shift_x = (np.arange(0, shape[1]) + 0.5) * stride
shift_y = (np.arange(0, shape[0]) + 0.5) * stride
shift_x = np.arange(0, features_shape[1]) * stride + offset_x
shift_y = np.arange(0, features_shape[0]) * stride + offset_y

shift_x, shift_y = np.meshgrid(shift_x, shift_y)

Expand Down
61 changes: 24 additions & 37 deletions tests/backend/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,8 +62,9 @@ def test_bbox_transform_inv():


def test_shift():
shape = (2, 3)
stride = 8
image_shape = (20, 20)
feature_shape = (2, 2)
stride = 8

anchors = np.array([
[-8, -8, 8, 8],
Expand All @@ -75,49 +76,35 @@ def test_shift():

expected = [
# anchors for (0, 0)
[4 - 8, 4 - 8, 4 + 8, 4 + 8],
[4 - 16, 4 - 16, 4 + 16, 4 + 16],
[4 - 12, 4 - 12, 4 + 12, 4 + 12],
[4 - 12, 4 - 16, 4 + 12, 4 + 16],
[4 - 16, 4 - 12, 4 + 16, 4 + 12],
[6 - 8, 6 - 8, 6 + 8, 6 + 8],
[6 - 16, 6 - 16, 6 + 16, 6 + 16],
[6 - 12, 6 - 12, 6 + 12, 6 + 12],
[6 - 12, 6 - 16, 6 + 12, 6 + 16],
[6 - 16, 6 - 12, 6 + 16, 6 + 12],

# anchors for (0, 1)
[12 - 8, 4 - 8, 12 + 8, 4 + 8],
[12 - 16, 4 - 16, 12 + 16, 4 + 16],
[12 - 12, 4 - 12, 12 + 12, 4 + 12],
[12 - 12, 4 - 16, 12 + 12, 4 + 16],
[12 - 16, 4 - 12, 12 + 16, 4 + 12],

# anchors for (0, 2)
[20 - 8, 4 - 8, 20 + 8, 4 + 8],
[20 - 16, 4 - 16, 20 + 16, 4 + 16],
[20 - 12, 4 - 12, 20 + 12, 4 + 12],
[20 - 12, 4 - 16, 20 + 12, 4 + 16],
[20 - 16, 4 - 12, 20 + 16, 4 + 12],
[14 - 8, 6 - 8, 14 + 8, 6 + 8],
[14 - 16, 6 - 16, 14 + 16, 6 + 16],
[14 - 12, 6 - 12, 14 + 12, 6 + 12],
[14 - 12, 6 - 16, 14 + 12, 6 + 16],
[14 - 16, 6 - 12, 14 + 16, 6 + 12],

# anchors for (1, 0)
[4 - 8, 12 - 8, 4 + 8, 12 + 8],
[4 - 16, 12 - 16, 4 + 16, 12 + 16],
[4 - 12, 12 - 12, 4 + 12, 12 + 12],
[4 - 12, 12 - 16, 4 + 12, 12 + 16],
[4 - 16, 12 - 12, 4 + 16, 12 + 12],
[6 - 8, 14 - 8, 6 + 8, 14 + 8],
[6 - 16, 14 - 16, 6 + 16, 14 + 16],
[6 - 12, 14 - 12, 6 + 12, 14 + 12],
[6 - 12, 14 - 16, 6 + 12, 14 + 16],
[6 - 16, 14 - 12, 6 + 16, 14 + 12],

# anchors for (1, 1)
[12 - 8, 12 - 8, 12 + 8, 12 + 8],
[12 - 16, 12 - 16, 12 + 16, 12 + 16],
[12 - 12, 12 - 12, 12 + 12, 12 + 12],
[12 - 12, 12 - 16, 12 + 12, 12 + 16],
[12 - 16, 12 - 12, 12 + 16, 12 + 12],

# anchors for (1, 2)
[20 - 8, 12 - 8, 20 + 8, 12 + 8],
[20 - 16, 12 - 16, 20 + 16, 12 + 16],
[20 - 12, 12 - 12, 20 + 12, 12 + 12],
[20 - 12, 12 - 16, 20 + 12, 12 + 16],
[20 - 16, 12 - 12, 20 + 16, 12 + 12],
[14 - 8, 14 - 8, 14 + 8, 14 + 8],
[14 - 16, 14 - 16, 14 + 16, 14 + 16],
[14 - 12, 14 - 12, 14 + 12, 14 + 12],
[14 - 12, 14 - 16, 14 + 12, 14 + 16],
[14 - 16, 14 - 12, 14 + 16, 14 + 12],
]

result = keras_retinanet.backend.shift(shape, stride, anchors)
result = keras_retinanet.backend.shift(image_shape, feature_shape, stride, anchors)
result = keras.backend.eval(result)

np.testing.assert_array_equal(result, expected)
12 changes: 10 additions & 2 deletions tests/layers/test_misc.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,12 +30,16 @@ def test_simple(self):
scales=np.array([1], keras.backend.floatx()),
)

# create fake image input (only shape is used anyway)
image = np.zeros((1, 16, 16, 3), dtype=keras.backend.floatx())
image = keras.backend.variable(image)

# create fake features input (only shape is used anyway)
features = np.zeros((1, 2, 2, 1024), dtype=keras.backend.floatx())
features = keras.backend.variable(features)

# call the Anchors layer
anchors = anchors_layer.call(features)
anchors = anchors_layer.call([image, features])
anchors = keras.backend.eval(anchors)

# expected anchor values
Expand All @@ -59,12 +63,16 @@ def test_mini_batch(self):
scales=np.array([1], dtype=keras.backend.floatx()),
)

# create fake image input (only shape is used anyway)
image = np.zeros((2, 16, 16, 3), dtype=keras.backend.floatx())
image = keras.backend.variable(image)

# create fake features input with batch_size=2
features = np.zeros((2, 2, 2, 1024), dtype=keras.backend.floatx())
features = keras.backend.variable(features)

# call the Anchors layer
anchors = anchors_layer.call(features)
anchors = anchors_layer.call([image, features])
anchors = keras.backend.eval(anchors)

# expected anchor values
Expand Down
26 changes: 26 additions & 0 deletions tests/utils/test_anchors.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,3 +167,29 @@ def test_anchors_for_shape_values():
strides[0] * 3 / 2 + (sizes[0] * scales[1] / np.sqrt(ratios[1])) / 2,
strides[0] * 3 / 2 + (sizes[0] * scales[1] * np.sqrt(ratios[1])) / 2,
], decimal=6)


def test_anchors_for_shape_odd_input():
pyramid_levels = [3]
image_shape = (20, 20) # this shape causes rounding errors when downsampling using convolutions
sizes = [32]
strides = [8]
ratios = np.array([1], keras.backend.floatx())
scales = np.array([1], keras.backend.floatx())
anchor_params = AnchorParameters(sizes, strides, ratios, scales)

anchors = anchors_for_shape(image_shape, pyramid_levels = pyramid_levels, anchor_params = anchor_params)

expected_anchors = np.array([
[-14, -14, 18, 18],
[-6 , -14, 26, 18],
[2 , -14, 34, 18],
[-14, -6 , 18, 26],
[-6 , -6 , 26, 26],
[2 , -6 , 34, 26],
[-14, 2 , 18, 34],
[-6 , 2 , 26, 34],
[2 , 2 , 34, 34],
])

np.testing.assert_equal(anchors, expected_anchors)