Skip to content

neuro-symbolic-ai/saf_datasets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SAF-Datasets

Dataset loading and annotation facilities for the Simple Annotation Framework

The saf-datasets library provides easy access to Natural Language Processing (NLP) datasets, and tools to facilitate annotation at document, sentence and token levels.

It is being developed to address a need for flexibility in manipulating NLP annotations that is not entirely covered by popular dataset libraries, such as HuggingFace Datasets and torch Datasets, Namely:

  • Including and modifying annotations on existing datasets.
  • Standardized API.
  • Support for complex and multi-level annotations.

saf-datasets is built upon the Simple Annotation Framework (SAF) library, which provides its data model and API.

It also provides annotator classes to automatically label existing and new datasets.

Installation

To install, you can use pip:

pip install saf-datasets

Usage

Loading datasets

from saf_datasets import STSBDataSet

dataset = STSBDataSet()
print(len(dataset))  # Size of the dataset
# 17256
print(dataset[0].surface)  # First sentence in the dataset
# A plane is taking off
print([token.surface for token in dataset[0].tokens])  # Tokens (SpaCy) of the first sentence.
# ['A', 'plane', 'is', 'taking', 'off', '.']
print(dataset[0].annotations)  # Annotations for the first sentence
# {'split': 'train', 'genre': 'main-captions', 'dataset': 'MSRvid', 'year': '2012test', 'sid': '0001', 'score': '5.000', 'id': 0}

# There are no token annotations in this dataset
print([(tok.surface, tok.annotations) for tok in dataset[0].tokens])
# [('A', {}), ('plane', {}), ('is', {}), ('taking', {}), ('off', {}), ('.', {})]

Available datasets: AllNLI, CODWOE, CPAE, EntailmentBank, STSB, Wiktionary, WordNet (Filtered).

Annotating datasets

from saf_datasets import STSBDataSet
from saf_datasets.annotators import SpacyAnnotator

dataset = STSBDataSet()
annotator = SpacyAnnotator()  # Needs spacy and en_core_web_sm to be installed.
annotator.annotate(dataset)

# Now tokens are annotated
for tok in dataset[0].tokens:
    print(tok.surface, tok.annotations)

# A {'pos': 'DET', 'lemma': 'a', 'dep': 'det', 'ctag': 'DT'}
# plane {'pos': 'NOUN', 'lemma': 'plane', 'dep': 'nsubj', 'ctag': 'NN'}
# is {'pos': 'AUX', 'lemma': 'be', 'dep': 'aux', 'ctag': 'VBZ'}
# taking {'pos': 'VERB', 'lemma': 'take', 'dep': 'ROOT', 'ctag': 'VBG'}
# off {'pos': 'ADP', 'lemma': 'off', 'dep': 'prt', 'ctag': 'RP'}
# . {'pos': 'PUNCT', 'lemma': '.', 'dep': 'punct', 'ctag': '.'}

Using with other libraries

saf-datasets provides wrappers for using the datasets with libraries expecting HF or torch datasets:

from saf_datasets import CPAEDataSet
from saf_datasets.wrappers.torch import TokenizedDataSet
from transformers import AutoTokenizer

dataset = CPAEDataSet()
tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left", add_prefix_space=True)
tok_ds = TokenizedDataSet(dataset, tokenizer, max_len=128, one_hot=False)
print(tok_ds[:10])
# tensor([[50256, 50256, 50256,  ...,  2263,   572,    13],
#         [50256, 50256, 50256,  ...,  2263,   572,    13],
#         [50256, 50256, 50256,  ...,   781,  1133,    13],
#         ...,
#         [50256, 50256, 50256,  ...,  2712, 19780,    13],
#         [50256, 50256, 50256,  ...,  2685,    78,    13],
#         [50256, 50256, 50256,  ...,  2685,    78,    13]])

print(tok_ds[:10].shape)
# torch.Size([10, 128])

About

Simple Annotation Framework - Data set loading facilities

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages